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Abstract 

A flash code is a mechanism basically used in encoding and decoding digital information to flash memory 

devices.  Flash codes in literature operates in single bit update framework where a data update equates to a single cell 

write to the flash memory block.  In this study, the K-Partition Flash Code (KPFC) and its variant KPFC-m is implemented 

in the new framework where multiple bit update is possible.  Analytic investigation was conducted to derive the 

theoretical worst case write deficiency while computer simulations were used to estimate its average case performance.  

Results show that KPFC and its variant KPFC-m is still competitive with some flash codes in literature using the new 

framework.  More importantly, the implementation of this coding scheme can help extend the lifespan of flash devices. 
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I.  Introduction 

Flash memory is classified as a semi-conductor storage device that can be found in variety of applications.  It 

is a type non-volatile memory (NVM) generally used in mass storage devices nowadays.  Its application can be 

significantly found in embedded systems like in household appliances; it is also progressively used in 

telecommunication devices and other machineries.  The technology in flash memories guarantees a high-density 

tolerance making it quick, compact, reliable and shock-resistant.  Furthermore, it is relatively easy to electrically 

program and erase flash memory devices (Richter 2014; Bez et al. 2003). 

The layered structure of flash memories is logically organized into blocks composed of thousands of cells 

that can store electric charges.  These array of floating gate cells can be grouped as partitions or slices inside a block.  

A cell charge can transition to a higher level through Channel hot electron injection  (Cappelletti &Modelli 1999; 

Rivest & Shamir 1982).  The process is basically called cell programming (Jiang & Bruck, 2008), where the electric 

charges of each cell are determined by some encoding function defined by a coding mechanism.  The coding 

technique is commonly denoted as flash codes (Jiang, Bohossian& Bruck 2007; Yaakobi et al. 2008). 

Flash memory is modelled as a write-asymmetric memory (Jiang, Bohossian& Bruck 2007).  Decreasing the 

level of charge in a cell is not possible unless block erasure is performed that physically erases all eletric charges of 
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cells in a block (Chee et al. 2017).  Fowler-Nordheim tunneling mechanism is applied to the whole block (Canet et al. 

2005), where all cells are set back to 0.  The whole process is computationally costly and must be avoided because 

flash memory devices are constrained by some limited number of block erase cycles.  Moreover, memory cells 

eventually wear out once a practical limit is operationally reached.  Block erasure significantly affects the lifespan 

and reliability of flash memory devices.  A typical memory block can only tolerate approximately 103 - 105 number of 

block erasures before a memory block becomes unreliable for storing data (Mahdavifar et al. 2009; Yaakobi et al. 

2015). 

To address the problem on limited number of block erasure, an efficient flash code can be carefully and 

intelligently designed so that more write operations can be accommodated before calling block erasure.  Assuming 

no errors will occur, delaying the call for block erase will lengthen the lifecycle of flash memories.  Hence, the 

underlying efficient design of coding mechanism of flash code can potentially affect the speed and lifespan of flash 

memories. 

Most flash codes in literature only allow single bit update framework per cell write.  More recently, there are 

already developed flash codes that accommodate multiple bit updates.  The new platform which was advanced by 

Bautista and Fernandez (2014) is called Simultaneous Bit Update framework; it allows multiple bits of data 

updates using a single cell write.  Some flash codes in literature in both frameworks will be described and 

explained in greater detail in the next section. 

The K-Partition Flash Code (KPFC) is a recent flash code in literature that is shown to be efficient in maximizing 

cell updates before calling block erasure (Ortiz and Fernandez, 2014).  Most flash codes in literature only allow 

single bit update framework per cell write. Nonetheless, this study will implement KPFC and its variant KPFC-m in a 

new framework advanced by Bautista and Fernandez (2014).  This framework is called Simultaneous Bit Update 

framework; it allows multiple bit of data updates using a single cell write. 

 

II. Objectives 

This study focused on the performance of K-Partition Flash Code and its variant KPFC-m in the Simultaneous 

Bit Update Framework.  The study sought answers to the following additional objectives:  

1. To assess the average-case performance of the flash codes through computer simulation in terms of: 

 1.1 write deficiency; and 

 1.2 average number of data updates. 

2. To compare the performance of the flash codes against other flash codes. 

 

III. Context of the Study 

The logical structure of flash memory is logically prearranged as blocks.  A block is comprised of a large 

number of flash cells represented by n.  Typical values of n range from 218 to 220 floating gate cells (Mahdavifar et al. 

2009). 

In multilevel flash memories, a block is abstractly denoted by a vector C = (c0, c1,…, cn-1), where ci  {0,1,…, q-

1}.  Each cell transitions in one of q levels from a finite set Aq = {0,1,…, q-1}. The parameter q spans from 2 to 256 

(Mahdavifar et al. 2009). The values indicate the amounts of electric charges present in the cell array. Accordingly, 

a cell is empty when it has a charge of 0, while a cell is full when it has a charge of q-1.  An active cell is in effect 

when it is neither empty nor full. 

On the other hand, the information stored in the memory block is a binary k-bit data D = (d0, d1, ..., dk−1), 

where di {0,1} and k<n.     The size of a memory block can be 64, 128, or 256 kilobytes of data (Jiang, Bohossian and 

Bruck 2010).  The mapping between the block state vector C and the contained digital data D is handled by some 

coding mechanism called flash code F.   
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Formally, the flash code F = (E, D) is a coding mechanism composed of two central functions.  The encoding 

function E (i,C) : {0,1, …, k} × {0,1,..., q − 1}n → {0,1,..., q − 1}n∪ε specifies the procedures on creating a new state to 

the block with the index i of the data bit diwhich requires to be written and ultimately call for update on the 

current block state C. In contrast, the decoding function D (C) : {0,1, … , q-1}n →{0,1}k translates the information 

state C stored in the block into its equivalent k-bit data D (Jiang, Bohossian& Bruck 2007). 

There are only two operations to update a block’s cell state vector. The first is cell programming, that 

increments the level of a cell by at least one until it reaches q - 1. Basically, the cell state vectors transition from a 

lower state to a higher state.  Suppose there are two cell state vectors C = (c0, c1,…, cn-1), and C’ = (c’0, c’1,…, c’n-1).  If 

c’i ≥ci holds true for all i  {0,1,…, n-1}, then C’ is higher than C, and say that C’ is strictly above C if C’ ≠C is further 

satisfied.  The other block operation is the block erasure which resets the block’s cell state vectors values to zero 

and reducess it to an empty state {0}n. 

 For purposes of evaluating the performance of the flash code, metrics like write-deficiency, average number 

of data updates and number of auxiliary writes may be used. 

 

 

IV. Literature Review 

  This section provides a short summary of the development of flash codes.  Discussions on flash memory, its 

technology and architecture and flash codes are presented in this section.  It is notable to mention that there are 

studies that stressed the significance of improving the worst case write deficiency of the flash codes.  Further, there 

are also studies that focused on reducing the write deficiency ratio of the flash codes in the average case which is 

conceivably an approximate to real world applications. 

 

 

Flash Memory 

Flash memories are regarded as the most attractive kind of non-volatile memory nowadays. With their 

promising features and qualities like speed, high-density, robustness,  and reliability, flash memories are now widely 

used in memory cards, mobile devices, embedded systems and other standard storage devices. The flash memory 

technology is based on floating-gate transistors having storage cells that allow a transition from a lower state to a 

higher state but not vice versa. This is similar to punch cards and digital optical discs technologies that cell transition 

is irreversible between states. 

 

Technology and Architecture 

 From the technology perspective, there are two types of flash memories, to wit: NOR type of flash memory 

and NAND type of flash memory. Similarly, both technologies are based on floating-gate transistors. However, the 

NAND technology can store more data because of its denser layout compared to NOR. Hence, it is more commonly 

used in designing mass storage devices. 

The NAND technology flash memory is further categorized into two: single-level cell (SLC) and multi-level 

cell (MLC). Normally, SLC flash is used for industrial products while MLC flash is intended for consumer products. 

MLC flash memory allows to store multiple bits; on the other hand, SLC flash memory stores a single bit of 

information per cell. Multi-level flash memory was developed recently to attain higher density (Lee et al. 2009). 

 

Flash Codes 

When multilevel flash devices came to be widely used, generalization of floating codes rose to be of equal 

importance.  While there are several studies on floating codes, not much attention was given to the development of 
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coding mechanisms to optimize the number of rewrites prior to the calling block erasure.  Delaying the call for block 

erase significantly enhances writing speed and potentially extends the lifespan of flash memory. 

Coding scheme for write asymmetric memories (WAM) has roots to the older write once memory codes (WOM) 

codes, basically called floating codes where each cell can either be in two states.  Flash code or floating code was 

coined in 2007 (Jiang, Bohossian and Bruck 2007).  A floating code was introduced for k = 2, n ≥ 3 and arbitrary q.    In 

the subsequent study, Jiang and Bruck (2008) presented floating codes for limited values of k and n, like n = k ≥ 3 and 

3 ≤ k ≤ 6.  They also described an indexed code that stores bits into groups of cells using some indexing scheme.  

Similarly, the study of Yaakobi et al. (2008), introduced a code for arbitrary n, q, and k; the authors were able to 

improve the coding schemes of Jiang, Bohossian, and Bruck (2007).    

 The Index-less Indexed Flash Code (ILIFC)  is among the most popular flash codes in literature. The ILIFC 

basically divides the block into logical units called slices with k cells. Consequently, there are approximately m slices a 

memory block where  m = ⌊n / k ⌋.  ILIFC offers a well-designed mechanism for storing the bit index i as well as the bit 

value vi of the active slices.  We denote the vector C = (c0,c1,...,cn−1) loosely as C = (s0|s1|...|sm−1) to illustrate the division 

of the block into equally sized slices.  Activation of a slice is achieved by performing cell write in the i-th cell within a 

slice that matches the i-th bit index of the k-bit data (Yamawaki, Kamabe& Lu 2017).   

As to its performance, its worst case write deficiency is O(k2q).  The study of Mahdavifar et al. (2009) provides 

detailed information of ILIFC and its decoding and encoding functions.  Block erasure only happens when  a write 

operation is not accommodated from actives slices.  This type of encoding with k cells in every slice performs poorly k 

increases.  The remainder cells, ie unused cells which can be at most  n mod k also contributes to the write deficiency.   

The Layered Index-less Indexed Flash Code (LILIFC) is an adaptation of ILIFC.  Technically, LILIFC operates 

similarly with ILIFC.  This coding technique also operates on equally sized sub-blocks called slices with k cells each. 

However, the only difference is the layer-based encoding where the level of each cell in a slice is increased in a circular 

manner.  The study of Suzuki and Wadayama (2011) presents a more detailed discussion on how LILIFC manages the 

encoding and decoding of k-bit data to the memory block.  With regards to performance, LILIFC returns a better 

performance than ILIFC in the average case.  Nevertheless, both coding techniques have the same worst case write 

deficiency 

A hybrid flash coded using both techniques, ie ILIFC, and LILIFC was studied by Ortiz, Esling and Fernandez 

(2014).  It was referred to as the Bi-Modal Flash Code (BMFC).  As opposed to the former flash codes, BMFC reduced 

the size of every slice to k/2, with the first half indeces using ILIFC and the remaining half using LILIFC.  It treated the 

block into two-sided storage growing towards opposite ends whenever slice is activated.  To do this, an empty slice is 

maintained and preserved to distinguish left and right oriented slices.  This slice consequently added to the write 

deficiency of the flash code.  Its asymptotic write deficiency is O(k2q + n/k). 

On the other hand, the study of Tan and Kaji (2012) introduced the Binary Indexed Flash Code (BIFC). This 

flash code likewise used fewer cells for each slice.  Contrary to ILIFC and LILIFC, the slice in BIFC has typically a size of 

s = O(log k) and s ≥ ⌊1+log2(k+1)⌋. BIFC performed better than the former flash codes when there is larger value of k.  

However, this flash code suffers an overhead deficiency of s-2 over each of slices in the block due to inherent indexing 

mode. The BIFC has a worst case write deficiency of O(qklog k + n) . 

The write deficiency is the metric used to describe their performances.  Using computer simulations, the 

ILIFC and LILIFC have better performances in the lower values of k. As the value of k increases, its write deficiency 

shoots up.  BMFC was able to improve the performance of ILIFC and LILIFC to some values of k.  From the given flash 

codes, it is the BIFC that has the better performance.  Its ability to use smaller size of slices translated to better 

performance. It significantly outperformed the other flash codes using their average case performances.    

The study of Bautista and Fernandez (2014) first introduced the multi-bit update framework where 

simultaneous data bit updates are possible in a single data update.  Essentially, the performance of the flash code is 

the sum of all unused levels and auxiliary writes.  The authors also presented a novel coding mechanism referred to as 
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Sequential Cascading Flash Code (SCFC) that requires k active cells to represent the data vector of length k.  Block 

erasure is returned if there are no available k cells to encode k-bit data.  In SCFC, the value of cell cjrepresents a single 

bit vi. Thus no logical indexing is required.  The bits are assigned from left to right ignoring full cells.  When current cell 

is full, there is a cascade shift performed to assign the bit to the next cell.  In this encoding, no residual cells are 

produced. 

 Another flash code that operates in multi-bit update framework is the Circular Pair Flash Code (CPFC) 

(Agustin & Fernandez 2015).  In this scheme, the concept of pair slices is utilized where it has the capability to 

program a single cell for two updates.  With this flash code, a slice can be one of two types: single slice or pair slice.  

The pairing of bits is done in circular fashion.  However, applying all possible pairs to code is impractical because the 

slice size will definitely be affected.  The process enables the flash code to handle more data updates before resorting 

to block erasure.  The performance of the flash code has been described using three metrics: namely, write deficiency, 

write efficiency and average number of data updates.  Results of the study showed that CPFC could handle more data 

updates before calling block erasure.  This was attributed to the utilization of pair slices accommodating more bit 

updates against existing codes. 

 As to the write deficiency ratios of SCFC and CPFC in the uniform, the SCFC returned the better performance 

than CPFC in the multiple bit update framework.  The sequential cascading technique where there is no indexing 

required was able to utilize most of the cells in the block.  Hence, the flash code was able to maximize cell writes in the 

block and further delayed the call for block erase. 

 

 

 

V. Methodology 

 

The flash codes were tested to ascertain the accuracy of the implementation.  Selected flash codes from literature 

were also included in the study.   Using the new framework, the flash codes involved were implemented to produce 

benchmarking results as to its performance.  Using computer simulations, the write efficiency ratios, write deficiency 

ratios,  and number of data updates were returned for comparison.    

In this study, the algorithms were theoretically analyzed as to its worst case performance.  For the empirical results, 

computer simulations implemented in Java were used to describe the average case performance of the flash codes.   

The computer simulations were set to run in 30 experiments with  parameters of n=2048 and q=8 for various k 

values from 4 to n/2, in increments of 4.   The update probability of the information vector p has values of 10% to 

90%. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Methodology of the Study 
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VI. KPFC and its variant KPFC-m in the Simultaneous Bit Update Framework 

The K-Partition Flash Code and its variant, KPFC-m are discussed in detail in this section. Refer to the study 

of Ortiz and Fernandez (2014) on operation of the flash codes and their performances in single bit update 

framework.    

The K-Partition Flash Code (KPFC) basically partitions the block of n cells into k groups of contiguous cells 

mapped bijectively to the k indices of the data.  Each group is referred to as a partition having exactly ⌊n/k⌋ cells.   

Updating a bit is relatively simple, Figure 2 illustrates how a cell write is implemented to a cell within the 

corresponding ith partition that corresponds to the index of the bit update. 

 

 

 

 

 

 

 

 

Figure 2:  Write Sequence for KPFC 

 

 

 

 

 

 

Figure 3:   Write Sequence for KPFC-m 

 

A variant of KPFC is called KPFC-m. It offers a sharing mechanism using a BIFC slice.  The BIFC slice has a 

size of s ≥ ⌊1+log2(k+1)⌋.  The introduction of sharing mechanism delays the occurrence of block erasure.  The idea 

behind KPFC-m is to initialize as many BIFC slices as possible within a normal partition (see Fig. 3 for the sharing 

mechanism).   KPFC-m works well when there are many unassigned cells, these remainder cells are automatically 

assigned to the last partition where BIFC slices can be implemented. 

 The following figures shows the decoding and encoding algorithms of the K-Partition Flash Code (see Fig. 4 

and 5).  On the other hand, Figures 6 and 7 illustrate the decoding and encoding algorithms of KPFC-m, respectively. 
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Figure 4:  Decoding Algorithm of KPF 

 

 

 

Figure 5:  Encoding Algorithm of KPFC 
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Figure 6:  Decoding Algorithm for KPFC-m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Encoding Algorithm for KPFC-m 
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Average Case Performance 

Computer simulations were performed to estimate the average case performance of the flash codes involved 

in the study.  The implemented simulation had the following parameters: n=2048, q=8, k∈ {4,8,...,1024}).  The k-bit 

binary sequence D’ was randomly generated, where each bit (d’i) is given the same probability of being updated.  The 

flash codes were tested using update probability values from p =0.10 to p=0.90 with increments of 0.20.  There were 

30 experiments for each value of k∈ {4,8,...,1024}.  Similarly, the same configurations were used in comparing the 

flash codes involved with other flash codes in literature.  For each experiment, the write deficiency and the average 

number of data updates were returned by the simulation. 

 

The write deficiency ratios of KPFC and KPFC-m are presented in Figures 8 and 9.   It can be observed that as 

the update probability p increases, the write deficiency ratios of both flash codes decreases.  This can be attributed to 

the equal probability of every bit in the conduct of simulation; there is uniform frequency distribution.   

 

Parallel to single bit update framework, the performance of the flash codes decreases when the size of the 

data k increases.  Note that between KPFC and KPFC-m, it is the latter that has the better write deficiency for all 

update probability values of p.  This is due to the ability of KPFC-m to utilize the residual cells, which can be at most n 

mod k.  These remainder cells cause the spikes in the trajectory of the write deficiency ratios of the flash codes.  Yet, 

the KPFC-m variant can significantly use these cells at some lower values of update probability p. 

 

 

 
Fig. 8: Worst Case Write Deficiency of KPFC 
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Fig. 9: Worst Case Write Deficiency of KPFC-m 

 
 

 

 Figures 10 and 11 present the average number of data updates for the flash codes in the simultaneous bit 

update framework.  As shown in the graphs, while the size of the data k increases, the number of data update 

decreases.  The larger the size of the data, the more difficult for the flash code to accommodate cell writes.  Thus, this 

phenomenon results to the calling of block erasure.  Moreover, the number of data updates gradually decreases as 

the update probability p increases.  The same scenario can be observed in both flash codes, the KPFC and its variant 

KPFC-m.  It can be inferred that in simultaneous bit update framework, multiple bits can be updated at a single time.  

Hence, the total number of data writes is expected to decrease considering that more cell writes are performed for 

every data update.   

However, looking closely at the data, KPFC-m has more data updates compared to its predecessor, the KPFC.  

In all update probability, the flash code showed better performance than KPFC.   This implies that the variant KPFC-

m can still work well in the new framework.  

 

 
Fig. 10: Average Number of Data Updates of KPFC 
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Fig. 11: Average Number of Data Updates of KPFC-m 

 

 

 

 

 

Comparison to other Flash Codes in Literature 

For the purpose of comparison, the variant KPFC-m is used for simplicity.  The performance of KPFC-m is 

then compared to the slice based flash codes like ILIFC and LILIFC, as well as the high performing flash codes 

designed in the simultaneous update framework like SCFC and CPFC (see Figures 12 and 13for the comparison).   

The write deficiency ratios of KPFC-m, ILIFC, LILIFC, CPFC and SCFC are shown in Figure 12.   In general, the 

variant KPFC-m outperforms ILIFC, LILIFC and even CPFC in terms of write deficiency.  Nevertheless, it is SCFC that 

performs better than KPFC-m.  The ability of SCFC to avoid residual cells results to its better performance when 

dealing with more cell writes.  As to number of data updates (see Fig. 13), It is the CPFC that returned more data 

updates.  Its concept of pair slices where a single cell is capable for two updates is the key to handle more data 

updates.  KPFC-m and SCFC are comparable in terms of data updates.  From the results, it can be shown that KPFC 

and its variant KPFC-m is still competitive in the new framework. 
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Fig. 12: Worst Case Write Deficiency of KPFC-m, CPFC, ILIFC, LILIFC, SCFC 

 

 

 

 
Fig. 13: Average Number of Data Updates of KPFC-m, CPFC, ILIFC, LILIFC, SCFC 

 

 

 

VII. Conclusion 

In this study, the KPFC and its variant KPFC-m is implemented in the new framework where multiple bit 

update is possible.  The theoretical worst case of the flash codes was analyzed.  The expected average case 

performances of flash codes were estimated using computer simulations.  Performance was evaluated using two 

metrics, namely the write deficiency and the average number of data updates.   

Simulation results showed the variant KPFC-m compares favorably to ILIFC, LILIFC and CPFC when using 

write deficiency. On the other hand, its performance as to number of data updates only comes second to a high 

performing flash code designed specifically in multiple update framework.  Overall, the KPFC and its variant KPFC-m 
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is competitive even in the new framework.  This indicates that KPFC is still efficient and suggests that using the flash 

code can extend the life of flash memory devices. 

For future studies, another variant of KPFC can be developed that would really work well in the 

simultaneous bit update framework.  It would be interesting to experiment on cells capable of more data updates 

like enhancing the pair slice concept.  
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