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Abstract 

 

A lot of researchers handling data want their data tested for normality before proceeding to further statistical analysis. 

The classical tests for the assessment of normality among others are Kolmogorov-Smirnov (K-S) test, Lilliefors corrected 

K-S test, Shapiro-Wilk test, Shapiro-Francia test, Anderson-Darling test, Cramer-von Mises test, D’Agostinoskewness test, 

Anscombe-Glynn kurtosis test, D’Agostino-Pearson omnibus test, and the Jarque-Bera test. The visual methods commonly 

used are the histogram, boxplot, pp-plot, qqplot, and the stem-and-leaf plot. This paper seeks to find out the effect of 

sample and dispersion on quantile based plots for detecting normality in montecarlo simulated and the transformed data. 

It was observed that as the sample size increases the data approaches normality, while it suffers departure as standard 

deviation increases. It is therefore recommended that the visual methods, especially the qq-plot be used for detecting 

normality only when the sample size is low and the standard deviation is high. 

Keywords: Normality, QQ-plot, Sample Size, Dispersion, Classical Tests 

 

1.0 Introduction  

The statistical methods are based on various assumptions that uphold the methods. One of them is the normality 

assumption. It is often required to check the normality in many data analyses, although normality is implicitly or 

conveniently assumed in reality. If the assumption is violated, interpretations and inferences based on the models are 

not reliable, if not valid. There are two ways of checking normality. The graphical methods visualize differences 

between the empirical distribution and the theoretical distribution like a normal distribution. The numerical methods 

conduct statistical tests on the null hypothesis that the variable is normally distributed. The graphical methods 

visualize the distribution using plots. They are grouped into the descriptive and theoretical. The former method is 

based on the empirical data, whereas the latter considers both empirical and theoretical distributions.  

 

1.1 Descriptive plots and Theoretical Plots 

The frequently used descriptive plots are the stem-and-leaf-plot, (skeletal) boxplot, dot plot, and histogram. When N is 

small, a stem-and-leaf plot or dot plot is useful to summarize data; the histogram is more appropriate for large N 

samples. A stem-and leaf plot assumes continuous variables, while a dot plot works for categorical variables. A box 

plot presents the 25 percentile, 50 percentile (median), 75 percentile, and mean in a box. If a variable is normally 

distributed, its 25 and 75 percentile become symmetry, and its median and mean are located at the same point exactly 

in the middle. The P-P plot and Q-Q plot are more commonly used to check normality than the descriptive plots. The 

probability-probability plot (P-P plot or percent plot) compares the empirical cumulative distribution function of a 

variable with a specific theoretical cumulative distribution function (e.g., the standard normal distribution function). 

Similarly, the quantile-quantile plot (Q-Q plot) compares ordered values of a variable with quantiles of a specific 

theoretical distribution (i.e., the normal distribution). If two distributions match, the points on the plot will form a 

linear pattern passing through the origin with a unit slope. So, the P-P plot and the Q-Q plot are used to see how well a 
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theoretical distribution models the empirical data. Although visually appealing, these graphical methods do not 

provide objective criteria to determine the normality of variables. Interpretations are matter of judgments. Therefore 

this paper focuses on the necessity of numerical methods to determine normality rather than the graphical methods. 

It is also to compare numerical results with judgment. 

 

1.2 Theoretical Statistics 

The numerical methods of testing normality include the Kolmogorov-Smirnov (K-S) (Smirnov, 1948) D test (Lilliefors 

test, Lilliefors, 1967), Shapiro-Wilk’ test, Anderson-Darling test, and Cramer-von Mises test (SAS Institute 1995, von 

Mises, 1928).  The K-S D test and Shapiro-Wilk’ W test are commonly used. The K-S, Anderson-Darling (Anderson and 

Darling, 1954), and Cramer-von Misers (Cramer, 1928) tests are based on the empirical distribution function (EDF), which is defined as a set of N independent observations x1, x2, …xn with a common distribution function F(x). 
 

Table 1: Numerical tests of normality 

 Test  Statistic Sample Size (N) Distn 

Jarque-Bera (S-K) test 
2  

 

2 (2) 

Shapiro-Wilk W 20007  N  - 

Shapiro-Francia W 50005  N  - 

Kolmogorov-Smirnov D > 2000 EDF 

Cramer-volMises W2 > 2000 EDF 

Anderson-Darling A2 > 2000 EDF 

 

2.0 Methodology 

The Shapiro-Wilk statistic (1965) is the ratio of the best estimator of the variance to the usual corrected sum of 

squares estimator of the variance (Royston, 1982). The statistic is positive and less than or equal to one; being close to 

one indicate normality. The W statistic requires that the sample size need to greater than or equal to seven and less 

than or equal to 2,000 (Royston, 1992). 
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 Tnmmmwhere ,...,1   and 
n

mm ,...,1  are the expected values of the order statistics of independent and identically 

distributed random variables sampled from the standard normal distribution, and V is the covariance matrix of those 

order statistics. 

The Shapiro-Francia test is an approximate test that modified the Shapro-Wilk test. The statistic was developed by 

Shapiro and Francia (1972) and Royston (1983). Let 
i

x be the ith 

ordered value from our size-n sample, also 
ni

m : be the mean of the ithorder statistic when making n independent 

draws from a normal distribution. The Pearson correlation coefficient between x and the m is then given as: 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Order_statistic
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Order_statistic
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Under the null hypothesis that the data is drawn from a normal distribution, this correlation will be strong, so 
'

W

cluster just under 1, with the peak becoming narrower and closer to 1 as n increases. If the data deviate strongly from 

a normal distribution, 
'

W will be smaller (Shapiro and Francia, 1972).  

 

4. Data Analysis and Results 
4.1 Monte Carlo Simulation Setup  

To measure the effect of sample size on quantile based plots for detecting normality, we simulated random numbers 

following the normal distribution with 2  ,50    for various sample sizes (n = 20, 50, 100, 250, 500, 1000) and 

sets of transformed variables (cubic, square, square root, log, 1/square root, inverse, 1/square, and 1/cubic). Standard 

deviations of 3 and 5 were introduced into the simulation in order to test for the effect of dispersion. All analyses were 

done using MATLAB R2017a and STATA 12 SE. 

 

4.2 Empirical Results  
Table 1: Normality tests on transformed data when n = 20 and n = 50 

Sample 

size Transformation Formula 
chi2 Pr(chi2) Swilk Pr(Swilk) Sfrancia Pr(francia) 

20 cubic x^3 0.6200 0.7340 0.9789 0.9192 0.9874 0.9764 

 

square x^2 0.5400 0.7650 0.9747 0.8496 0.9827 0.9209 

 

identity x 0.5100 0.7750 0.9773 0.8949 0.9856 0.9591 

 

square root sqrt(x) 0.5100 0.7740 0.9793 0.9250 0.9879 0.9802 

 

log log(x) 0.5200 0.7690 0.9795 0.9273 0.9882 0.9818 

 

1/square root 1/sqrt(x) 0.5400 0.7620 0.9794 0.9261 0.9881 0.9816 

 

inverse 1/x 0.5700 0.7530 0.9791 0.9214 0.9878 0.9795 

 

1/square 1/(x^2) 0.6300 0.7280 0.9776 0.9002 0.9864 0.9677 

 

1/cubic 1/(x^3) 0.7200 0.6970 0.9753 0.8597 0.9840 0.9398 

50 cubic x^3 0.5500 0.7580 0.9599 0.0885 0.9729 0.2588 

 

square x^2 1.1600 0.5610 0.9696 0.2244 0.9690 0.1829 

 

identity x 1.9000 0.3870 0.9654 0.1508 0.9636 0.1139 

 

square root sqrt(x) 2.3100 0.3150 0.9567 0.0647 0.9605 0.0862 

 

log log(x) 2.7500 0.2530 0.9531 0.0460 0.9570 0.0636 

 

1/square root 1/sqrt(x) 3.2100 0.2010 0.9493 0.0319 0.9531 0.0459 

 

inverse 1/x 3.7000 0.1570 0.9451 0.0217 0.9490 0.0325 

 

1/square 1/(x^2) 4.5200 0.1040 0.9361 0.0095 0.9400 0.0156 

  1/cubic 1/(x^3) 5.3400 0.0690 0.9261 0.0039 0.9299 0.0072 

 

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Normal_distribution
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Fig. 1: Quantile plots of transformed data when n=20 

 

 

 

 
Fig. 2: Quantile plots of transformed data when n=50 
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Table 2: Normality tests on transformed data when n = 100 and n = 250 

Sample 

size Transformation Formula 
chi2 Pr(chi2) Swilk Pr(Swilk) Sfrancia Pr(francia) 

100 cubic x^3 1.5700 0.4560 0.9907 0.9171 0.9905 0.8401 

 

square x^2 0.6200 0.7330 0.9929 0.7284 0.9927 0.6134 

 

identity x 0.3400 0.8430 0.9935 0.8832 0.9933 0.7921 

 

square root sqrt(x) 0.4500 0.7990 0.9932 0.9019 0.9930 0.8199 

 

log log(x) 0.7100 0.7000 0.9925 0.8610 0.9924 0.7681 

 

1/square root 1/sqrt(x) 1.1400 0.5670 0.9915 0.7862 0.9913 0.6821 

 

inverse 1/x 1.7100 0.4250 0.9901 0.6732 0.9899 0.5662 

 

1/square 1/(x^2) 3.3100 0.1910 0.9861 0.3821 0.9858 0.3080 

 

1/cubic 1/(x^3) 5.2200 0.0740 0.9806 0.1504 0.9802 0.1234 

250 cubic x^3 0.7000 0.7060 0.9954 0.6552 0.9957 0.6421 

 

square x^2 0.0100 0.9940 0.9961 0.7833 0.9966 0.7923 

 

identity x 0.3700 0.8300 0.9955 0.6801 0.9961 0.7058 

 

square root sqrt(x) 0.9000 0.6370 0.9947 0.5419 0.9954 0.5737 

 

log log(x) 1.6500 0.4390 0.9937 0.3722 0.9943 0.4056 

 

1/square root 1/sqrt(x) 2.6000 0.2730 0.9923 0.2163 0.9930 0.2457 

 

inverse 1/x 3.7500 0.1540 0.9906 0.1066 0.9913 0.1283 

 

1/square 1/(x^2) 6.3700 0.0410 0.9863 0.0172 0.9870 0.0245 

         

 

1/cubic 1/(x^3) 9.2500 0.0100 0.9809 0.0019 0.9816 0.0034 

 
Fig. 3: Quantile plots of transformed data when n=100 
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Fig. 4: Quantile plots of transformed data when n=250 

 

 

Table 3: Normality tests on transformed data when n = 500 and n = 1000 

Sample 

size Transformation Formula 
chi2 Pr(chi2) Swilk Pr(Swilk) Sfrancia Pr(francia) 

500 cubic x^3 14.0500 0.0010 0.9896 0.0013 0.9891 0.0014 

 

square x^2 7.4200 0.0240 0.9942 0.0555 0.9938 0.0395 

 

identity x 2.5300 0.2820 0.9971 0.5331 0.9968 0.3624 

 

square root sqrt(x) 1.1400 0.5660 0.9979 0.8037 0.9975 0.6014 

 

log log(x) 0.5300 0.7660 0.9983 0.9013 0.9979 0.7189 

 

1/square root 1/sqrt(x) 0.7400 0.6910 0.9982 0.8752 0.9978 0.6781 

 

inverse 1/x 1.7900 0.4090 0.9976 0.6988 0.9972 0.4854 

 

1/square 1/(x^2) 6.5000 0.0390 0.9952 0.1192 0.9947 0.0749 

 

1/cubic 1/(x^3) 13.4500 0.0010 0.9909 0.0035 0.9903 0.0030 

1000 cubic x^3 28.6300 0.0000 0.9899 0.0000 0.9898 0.0000 

 

square x^2 14.5300 0.0010 0.9944 0.0010 0.9944 0.0013 

 

identity x 5.1400 0.0760 0.9973 0.0887 0.9973 0.0831 

 

square root sqrt(x) 2.2300 0.3270 0.9980 0.2922 0.9980 0.2635 

 

log log(x) 0.9200 0.6330 0.9983 0.4573 0.9984 0.4141 

 

1/square root 1/sqrt(x) 1.1300 0.5690 0.9982 0.3956 0.9983 0.3583 

 

inverse 1/x 2.8000 0.2470 0.9977 0.1785 0.9977 0.1642 

 

1/square 1/(x^2) 9.8400 0.0070 0.9954 0.0040 0.9954 0.0047 

  1/cubic 1/(x^3) 20.1700 0.0000 0.9914 0.0000 0.9914 0.0000 
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Fig. 5: Quantile plots of transformed data when n=500 

 

 

 

 

 
Fig. 6: Quantile plots of transformed data when n = 1000 
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5.0 Discussion of Results 

It is discovered that normality increases as the sample sizes increase on the quantile plots. The transformed data is 

used to compare the normality with the introduction of Chi-square, Shapiro-wilk and Shapiro-Francia test statistics. It 

is also discovered that dispersion has effect on normality of the transformed data, the departure from normality 

increases as the measure of dispersion increases.  

Comparison studies have concluded that order statistic correlation tests such as Shapiro–Francia and Shapiro–Wilk 

are among the most powerful of the established statistical tests for normality (Razali and Wah, 2011). One might 

assume that the covariance-adjusted weighting of different order statistics used by the Shapiro–Wilk test should make 

it slightly better, but in practice the Shapiro–Wilk and Shapiro–Francia variants are about equally good. In fact, the 

Shapiro–Francia variant actually exhibits more power to distinguish some alternative hypothesis (Ahmad and Khan, 

2015). 

 

6.0 Conclusion and Recommendation 

Making valid conclusion on whether data is normally distributed or not is mostly needed by researchers across the 

globe, and this can be done using the plots and the classical tests carried out in this paper. Considering the plot 

obtained on the squared transformed data when n = 1000, visually, one may quickly say the data is normally 

distributed, but its corresponding p-values using the classical tests Chi-square, Shapiro-Wilk, and Shapiro-Francia are 

0.0010, 0.0010, and 0.0012 which indicate rejection of normality assumption. Therefore, the quantile plots are most 

appropriate with few samples. 

From the results obtained in this work, it can be concluded that sample sizes and measures of dispersion have 

significant effect on detection of normality in a set of data using the quantile plots. As Normality increases the sample 

sizes increase, but decreases as the standard deviation increases. It is therefore recommended that the quantile plot 

be employed only when the sample size is small.  However the classical tests always give objective and precise results.  
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