Innovations

Techno-Strategic Competition: Great Power Rivalry and Global Security Assessing the Impacts of AI, Quantum, Bio-Tech and Autonomous Systems on 21st-Century Order

Kunle Olawunmi (Ph.D.)

Department of International Relations and Diplomacy, Chrisland University,
Abeokuta, Ogun State, Nigeria

ORCID 0009-0009-8889-2261

Abstract: This article examines the intersection of great power rivalry, particularly among the United States, China, and Russia—and rapid technological change, highlighting the implications for global security and human futures. It argues that emerging technologies such as artificial intelligence, quantum computing, and biotechnology are reshaping global power dynamics while introducing new risks and strategic instabilities. Drawing on international relations theory, security studies, and technology foresight, the study analyzes how geopolitical competition is accelerating innovation but undermining global cooperation on critical issues like arms control and existential risk. The article concludes with a call for renewed international collaboration to ensure technological progress advances, rather than endangers, global security and equity.

Keyword: Techno-strategic competition; Great power rivalry; Global security;
Emerging technologies; Artificial intelligence; Quantum computing; Biotechnology;
Autonomous systems; International cooperation. Techno-Strategic Competition: Great
Power Rivalry and Global Security Assessing the Impacts of AI, Quantum, Bio-Tech,
and Autonomous Systems on 21st-Century Order

Introduction

Trump singularity is upsetting to global peace and demands worldwide reflection. The intensification of strategic rivalry among the United States, China, and Russia overlapped with unmatched advances in emerging technologies, including artificial intelligence (AI), quantum computing, biotechnology, and autonomous systems provokes this treatise. Scholars argue that techno-strategic competition accelerates innovation, while simultaneously complicating existing security architectures by

introducing novel ethical and existential risks (Allen & Chan, 2017; Allison, 2017). As states vie for technological primacy, cooperative frameworks for arms control and digital governance have eroded, raising concerns over global stability and long-term human safety (Freedman, 2018). This study employs a multidisciplinary approach, drawing on international relations theory, security studies, and technology foresight to examine how great power competition and disruptive technologies mutually reinforce one another. By examining policy documents, strategic doctrines, and expert assessments, it maps key trends in techno-strategic rivalry and proposes pathways for reinvigorated international collaboration.

The Resurgence of Great Power Rivalry

In the early post-Cold War period, many analysts anticipated an enduring unipolar order under U.S. leadership. However, by the mid-2000s the international system began reverting to systemic competition, as states pursued status and security in an anarchic environment (Ikenberry, 2011; Mearsheimer, 2014). China's expansive Belt and Road Initiative and assertive naval deployments in the South China Sea illustrate its drive to revise regional power balances, while Russia's military interventions in Ukraine and Syria signal a challenge to Euro-Atlantic security institutions (Allison, 2017; Layne, 2018). These dynamics underscore a renewed era of strategic revisionism, wherein great powers leverage economic, military, and technological tools to contest prevailing norms and erode cooperative governance frameworks. President Trump's tenure ushered in a marked shift toward transactional and unilateral policymaking that intensified great power competition. administration's withdrawal from multilateral agreements. Notable among them is the Trans-Pacific Partnership (TPP), the Intermediate-Range Nuclear Forces (INF) Treaty, and the Paris Climate Accord. This move eroded established frameworks for collective engagement and signaled U.S. unwillingness to uphold prior commitments (Smith, 2019; Wright, 2020). Concurrently, the imposition of steep tariffs on Chinese goods catalyzed a protracted trade war, strengthening Beijing's resolve to pursue technological self-sufficiency and strategic partnerships outside U.S. influence (Bown, 2021). Moreover, Trump's ambivalent stance toward NATO and his public overtures to Russia created uncertainty among U.S. allies and emboldened Moscow to adopt more aggressive postures in Eastern Europe and the Middle East (Gordon, 2018; O'Hanlon, 2019). Collectively, these developments contributed to an environment in which Beijing and Moscow exploited perceived U.S. disengagement, thereby accelerating the techno-strategic competition that underpins current global security challenges.

President Trump's unilateral withdrawal from the Intermediate-Range Nuclear Forces (INF) Treaty and other multilateral accords prompted decisive responses from both Beijing and Moscow. In China, official commentary denounced efforts to

"multilateralize" the INF framework as inherently asymmetrical and prejudicial to Chinese security interests, while Chinese analysts argued that U.S. abrogation signaled an escalatory nuclear posture necessitating the accelerated development of indigenous medium and intermediate-range missile capabilities (U.S.-China Economic and Security Review Commission [USCC], 2019). Alongside, Russia's leadership framed its strategic modernization, including the public unveiling of advanced hypersonic weapons explicitly designed to circumvent U.S. missile defenses. This is in response and as a direct countermeasure to perceived American attempts to secure nuclear primacy (Dall'Agnol & Cepik, 2021). These parallel developments have, in turn, reinforced Sino-Russian strategic alignment, as both capitals seek to hedge against Western unilateralism and preserve mutual deterrence through enhanced coordination.

Empirical data reveal that, in the wake of U.S. unilateral withdrawals from the INF Treaty and other multilateral frameworks, both Beijing and Moscow have substantially expanded their military postures. According to SIPRI, China's defence budget grew by 4.7 percent in 2021. This mark its twenty-seventh consecutive year of increase, reaching USD 293 billion, while Russia's military expenditure rose by 2.9 percent to USD 65.9 billion in the same year (Stockholm International Peace Research Institute [SIPRI], 2022). By 2023, Russia further accelerated its buildup, registering a 24 percent increase to approximately USD 109 billion (SIPRI, 2024). At the same time, the United States has channeled a greater share of its (slightly declining) overall budget into research and development to preserve its technological edge (Marksteiner, 2022).

These trend reflects a causal linkage between the erosion of arms-control regimes and renewed arms-race dynamics. Expectedly, states perceive the withdrawal of these treaties as both a threat and opportunity, prompting quantitative surges in spending and qualitative investments in cutting-edge capabilities. Moreover, the parallel escalation in Beijing and Moscow has reinforced their strategic alignment, as both actors hedge against perceived U.S. unilateralism by deepening security cooperation. This quantitative evidence underscores the urgency of rebuilding robust, verifiable multilateral governance mechanisms to arrest the quantitative spiral of military competition and mitigate the attendant risks to global stability and human security.

The post-Cold War vision of a unipolar world order dominated by the United States has steadily eroded. The rise of China as a peer competitor and the reassertion of Russian military ambition evidenced by the annexation of Crimea in 2014 and the invasion of Ukraine in 2022 have reignited patterns of strategic competition reminiscent of the 20th century (Allison, 2017; Mearsheimer, 2019). The U.S.-China rivalry extends beyond military capabilities into trade, technological supremacy, and ideological contestation, often described as a "new Cold War" (Kaplan, 2020). Similarly, NATO-Russia tensions have intensified, as seen in expanded NATO deployments in Eastern Europe and Russia's increasingly aggressive posture (Giles, 2016). This renewed rivalry is not limited to conventional or nuclear domains but also permeates cyberspace, space, and global infrastructure initiatives like China's Belt and Road Initiative, further complicating the security calculus for all actors involved.

Evidently, and as it stands today, emerging technologies are transforming the character of conflict. Artificial intelligence (AI), quantum computing, autonomous weapons systems, cyber capabilities, and space-based technologies are altering both the offense-defense balance and the tempo of warfare (Horowitz, 2018; Kaspersen & Lindsey, 2020). Cyber warfare has emerged as a tool for strategic coercion, espionage, and hybrid operations, as seen in incidents such as the SolarWinds hack and the persistent targeting of critical infrastructure (Rid, 2020). AI and machine learning are now embedded in command-and-control systems, predictive surveillance, and targeting algorithms, raising concerns over accidental escalation and loss of human oversight. The context over Space domain, among the U.S., China, and Russia - developing anti-satellite capabilities and militarized orbital platforms (Wright, 2020) is dissonance to extant conventions. These developments overlap with existing geopolitical tensions, often amplifying risks and reducing the time available for diplomacy and decision-making.

Research Questions and Objectives

This paper seeks to address the following research questions:

- How are great power rivalries reshaping the contemporary international security environment?
- What roles do emerging technologies play in exacerbating or mitigating strategic competition?
- What are the implications of these developments for global governance and the future of humanity?

The primary objective is to assess how geopolitical competition and technological transformation are converging to create a new, complex landscape of international security. By analyzing both dynamics in tandem, the study aims to contribute to theoretical and policy discussions about the evolution of strategic stability, the risk of escalation, and the role of global cooperation.

Theoretical Framework

The study of international security is underpinned by diverse theoretical traditions that offer competing interpretations of global subtleties. To understand the convergence of great power rivalry and rapid technological change, this paper draws on three major schools of thought in international relations:

- Realism (including neorealism),
- Liberal institutionalism, and
- Constructivism (including critical security studies).

Each framework offers a unique lens through which to analyze the shifting contours of global power and security in the 21st century.

Realism and Power Politics

One of the oldest and most enduring theoretical paradigms in international relations is realism. It views the international system as anarchic, meaning there is no overarching authority above sovereign states. In this environment, states are rational actors that prioritize survival, accumulate power, and operate with a self-help mentality (Morgenthau, 1948; Waltz, 1979). International security, therefore, is derived from the balance of capabilities. In the context of modern great power rivalry, realism explains the intensifying of the U.S. and China strategic rivalry as a power transition between a declining hegemon and a rising challenger. A dynamic associated with heightened risk of conflict (Mearsheimer, 2001). Relatedly, Russia's assertive behavior in its near-abroad, reflects realist calculations of geopolitical interest and regional dominance rather than ideological expansionism. As states perceive threats from contemporary competitors, they engage in military buildups, form strategic alliances, and pursue deterrence strategies consistent with the logic of realist thought.

Neorealism vs. Liberal Institutionalism

In the context of Global order, Neorealism, or structural realism, refines classical realism by attributing state behavior not to human nature, but to the structure of the international system itself. According to Waltz (1979), the anarchic structure compels states to act in predictable ways, balancing against rising powers and seeking relative gains to ensure survival. From a neorealist perspective, the weakening of unipolarity and the emergence of multipolarity driven by China's rise and Russia's resurgence expectedly, make the international system more volatile. Liberal institutionalism, on the other hand, argues that despite anarchy, cooperation is both possible and beneficial. Institutions, norms, and regimes can reduce uncertainty, facilitate information sharing, and help states manage interdependence (Keohane, 1984; Keohane & Nye, 1977). Liberal theorists contend that multilateral institutions

such as the United Nations, the World Trade Organization, and arms control agreements serve as stabilizing forces, especially in managing new domains like cyberspace or artificial intelligence.

Yet, recent trends such as the U.S. withdrawal from multilateral agreements, China's strategic decoupling, and Russia's rejection of Western institutional norms highlight the limitations of liberal institutionalism in the face of resurgent nationalism and realpolitik. This tension between systemic constraints (neorealism) and institutional cooperation (liberalism) reflects the dual character of today's global order.

Technology and Security: A Constructivist or Critical Security Lens.

From the standpoint of global peace, technological innovation should exhibit a dual character, for it both undermines and reinforces security architectures. For instance, the dual-use systems such as autonomous weapons and cyber-offensive tools does erode traditional arms-control by blurring civilian and military domains (Borrie & Crootof, 2019). Cyber operations lower the threshold for coercion, and AI-driven decision loops risk inadvertent escalation (Singer & Friedman, 2014; Taddeo & Floridi, 2018). Conversely, satellite monitoring and geospatial analytics strengthen treaty verification and transparency (United Nations Office for Disarmament Affairs [UNODA], 2020), while multistakeholder norm-setting in cyberspace fosters restraint and confidence-building (Finnemore & Hollis, 2016). To realize technology's peace-enhancing potential, governance frameworks must preempt dual-use dilemmas, institutionalize ethical constraints, and embed mechanisms for sustained international cooperation.

While realism and liberalism emphasize material power and institutions, constructivism foregrounds ideas, identities, and norms as central to the construction of international security (Wendt, 1999). From a constructivist perspective, technologies like AI, cyber tools, or space systems are not inherently destabilizing; rather, their meaning and threat potential are socially constructed through discourse and policy framing.

Again, constructivists argue that state behavior is shaped by intersubjective understandings of how threats are perceived, categorized, and responded to. For instance, whether AI is viewed as an instrument of military dominance or a tool for global development depends on prevailing social narratives and political agendas. Similarly, nuclear weapons have persisted as symbols of deterrence, even when unused, due to the normative structures surrounding their legitimacy (Tannen Wald, 2005).

Critical security studies extend this argument by questioning who defines "security" and whose interests are prioritized. Scholars in this tradition critique the militarization of technology and the securitization of domains like cyberspace, arguing that these processes often marginalize ethical concerns, democratic oversight, and human security (Buzan et al., 1998; Cohn, 1987). The framing of technological competition as an arms race, for example, reinforces state-centric paradigms while sidelining issues like privacy, inequality, and global justice.

Together, constructivist and critical approaches offer essential insights into the normative and discursive dimensions of technological transformation, complementing the more structural accounts provided by realism and liberalism. This pluralistic theoretical grounding allows for a more comprehensive analysis of the shifting security landscape.

Current Trends in Great Power Rivalry

In the 21st century, international security is increasingly shaped by a resurgence of great power rivalry. The post-Cold War unipolar moment, defined by U.S. hegemony and liberal internationalism, is giving way to a contested multipolar order. Strategic competition between major powers, primarily the United States and China, and NATO and Russia are being intensified by economic nationalism, regional security realignments, and technological disruption. These dynamics have significant implications for global governance, multilateralism, and regional stability, particularly in Africa and other states in the Global South.

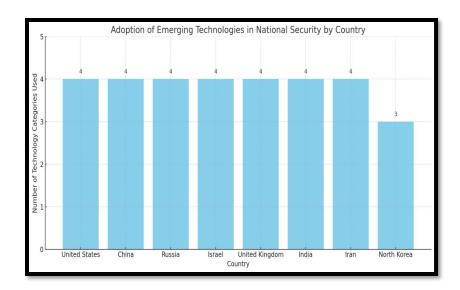

Several countries have integrated artificial intelligence and other disruptive technologies into their national defense strategies. The table below summarizes key examples of how global powers and regional actors are leveraging these tools to enhance or project military and strategic capabilities.

Table 1: The ap	polication of <i>R</i>	\I and other	Emerging	r Technoloc	ries by	7 Country

Countr	AI in Defense &	Cyber	Space	Other Key	
y	Security	Capabilities	Militarization	Technologies	
United States	AI used in autonomous drones, ISR, and command systems (Project Maven)	Offensive & defensive cyber ops (Cyber Command)	Space Force established (2019)	Quantum computing, hypersonic	
China	Facial recognition, battlefield decision support, swarm AI	Advanced cyber espionage (APT groups)	Expanding antisatellite (ASAT) capabilities	5G, AI- enhanced surveillance	

Countr	AI in Defense & Cyber		Space	Other Key
y	Security	Capabilities	Militarization	Technologies
Russia	AI used in missile targeting and EW systems	Cyber warfare (e.g., Ukraine, U.S. election interference)	Anti-satellite weapons tested	Robotics, EW, disinformation tech
Israel	AI in border surveillance, predictive threat analysis	Strong cyber intelligence (Unit 8200)	Satellite surveillance programs	Counter-drone systems, cyber tools
United	AI for threat	National Cyber	Joint operations	Blockchain in
Kingdo	modeling, military	Security Centre	with NATO	defense
m	logistics	(NCSC)	space command	contracts
India	AI in surveillance, drone control, and battlefield analytics	Expanding CERT capabilities	ISRO military collaboration	Indigenous missile tech, cyber tools
Iran	AI in drone swarms and surveillance systems	Notorious for cyberattacks (e.g., Stuxnet response)	Developing satellite tech	Cyber militia, asymmetric warfare
North Korea	Limited but growing AI interest	Cyber theft, ransomware operations	NA	NA

Figure 1. Illustrates the breadth of technological adoption among selected countries in national defense, showing how many categories of emerging technologies are being actively utilized or developed:

Here's a visual representation of how different countries are incorporating emerging technologies (AI, cyber capabilities, space militarization, and others) into their national security strategies.

U.S.-China Strategic Competition: A cursory examination of Indo-Pacific, Economic Decoupling, and Military Build-Up.

The United States and China are engaged in a multidimensional rivalry encompassing strategic, economic, and technological domains. At the heart of this competition is the Indo-Pacific region, where both powers are seeking to shape the regional balance of power. The U.S. has strengthened its alliance network such as the Quad (with Japan, Australia, and India) and AUKUS (with the UK and Australia) as part of its strategy to contain China's influence (Mastro, 2019). Meanwhile, China has expanded its presence through maritime militarization in the South China Sea, increased diplomatic and economic engagement via the Belt and Road Initiative (BRI), and the development of advanced anti-access/area denial (A2/AD) capabilities (Friedberg, 2018).

Economically, both countries are decoupling in key sectors such as semiconductors, telecommunications, and AI. The U.S. has imposed export controls and sanctions on Chinese tech firms, citing national security risks, while China is promoting self-reliance through its "dual circulation" strategy (Chen, 2021). Militarily, both sides are ramping up defense spending, enhancing cyber and space capabilities, and conducting frequent military exercises in contested zones, thus, raising the risk of miscalculation or escalation (Montgomery & Edelman, 2020).

NATO-Russia Dynamics Post-Ukraine War

In 2022, Russian invaded Ukraine and this broadly marked a turning point in NATO-Russia relations, ushering in a new era of confrontation reminiscent of Cold War bipolarity. NATO has responded by expanding its presence on its eastern flank, reinforcing its strategic coherence, and admitting new members such as Finland and Sweden. Russia, for its part, has reframed its security doctrine to counter what it perceives as Western encroachment and hybrid warfare (Götz, 2022).

The Russian-Ukrainian war has revalidated NATO's relevance and reinvigorated its political unity, but it has also heightened global tensions by intensifying nuclear rhetoric and leading to an arms buildup across Europe. Additionally, the conflict has disrupted global food and energy supply chains, demonstrating how localized geopolitical crises can have systemic international repercussions (Charap & Shapiro, 2022).

Impact on Multilateral Institutions and Global Governance

Great power competition is undermining the effectiveness of multilateral institutions that once served as stabilizers in the international system. Organizations such as the United Nations, the World Trade Organization, and the World Health Organization have faced paralysis or politicization, often due to the veto power or obstructionism of rival states (Patrick, 2021). The inability of the UN Security Council to respond decisively to the Ukraine war, for instance, has exposed the structural limitations of post-World War II institutions.

Meanwhile, emerging powers such as China and Russia are promoting alternative institutions like the Shanghai Cooperation Organization (SCO) and BRICS to challenge Western-dominated global governance structures. This institutional fragmentation risks the erosion of international norms and complicates collective action on transnational issues such as climate change, global health, and digital governance (Ikenberry, 2020).

Proxy Conflicts and Strategic Alliances in the Global South

Great power rivalry increasingly plays out through proxy competition and strategic alignments in the Global South. Countries in Africa, Latin America, Southeast Asia, and the Middle East are becoming arenas where the U.S., China, Russia, and other powers seek to extend their influence. For example, China's infrastructure investments in Africa and Latin America have been countered by U.S. and European initiatives such as the Build Back Better World (B3W) partnership (Rolland, 2021).

In the Middle East, Russia and the U.S. back opposing factions in conflicts such as Syria and Libya, while China has expanded its diplomatic footprint by brokering peace deals, such as the 2023 Saudi-Iran rapprochement. These alignments are often transactional and driven by strategic interests, further complicating the regional security architecture and reinforcing the Global South's role as a geopolitical battleground (Chaudhuri & Farrell, 2022).

AI and Autonomous Weapons Systems

The Ukrainians have demonstrated that Artificial intelligence (AI) is revolutionizing military decision-making, surveillance, targeting, and command-and-control systems. The Russians has likewise displayed in their special military operations against Ukraine the function of AI-enabled autonomous weapons systems (AWS) ranging from the application of unmanned aerial vehicles to maritime drones and loitering munitions can independently select and engage targets without direct human oversight. This shift raises profound ethical, legal, and strategic questions about accountability and escalation (Scharre, 2018).

Major powers such as the United States, China, and Russia are investing heavily in military AI to gain an edge in speed, precision, and adaptability. However, the lack of international consensus on norms or treaties governing AWS increases the risk of unintended escalation, particularly in crisis situations where rapid machine-to-machine interactions may spiral out of control (Boulanin & Verbruggen, 2017). Calls for a preemptive ban or strict regulation of lethal autonomous systems such as those led by the Campaign to Stop Killer Robots, have so far yielded limited progress due to geopolitical distrust and technological asymmetries (Heyns, 2017).

Cyber security Threats and Information Warfare

Cyber capabilities have become core tools of statecraft, enabling espionage, sabotage, and coercion in peacetime and conflict alike. State-sponsored cyberattacks target critical infrastructure, financial systems, and democratic institutions, undermining societal resilience and blurring the line between war and peace (Rid, 2020). The 2017 NotPetya attack, widely attributed to Russian actors, and China's cyber-enabled theft of U.S. defense secrets are prominent examples of strategic cyber aggression (Sanger, 2018).

Simultaneously, information warfare through disinformation campaigns, deepfakes, and social media manipulation has emerged as a tool for shaping public opinion and destabilizing adversaries. Russia's use of disinformation in Ukraine and electoral interference in Western democracies highlight the strategic utility of narrative control in hybrid warfare (Giles, 2016). The decentralized, low-cost nature of cyber and informational tools enables asymmetric actors to punch above their weight, compounding strategic uncertainty.

Militarization of Space and Quantum Technologies

Outer space, once a domain dominated by scientific cooperation, is now a contested military frontier. The deployment of anti-satellite (ASAT) weapons, satellite jammers, and space-based surveillance platforms reflects growing concern about the vulnerability of space assets that support terrestrial military operations (Wright, 2020). The creation of dedicated military space commands in the U.S., China, Russia, and India underscores the securitization of orbital space.

Quantum technologies especially quantum computing and quantum communication add another layer of complexity. Quantum computing could render existing encryption obsolete, undermining cybersecurity and strategic communications, while quantum sensing may offer new forms of stealth detection and navigation (Kania & Costello, 2021). The race to achieve "quantum supremacy" has become a key focus of national security strategies in both the West and China, raising the stakes for technological competition and espionage.

Dual-Use Technologies and the Erosion of Arms Control Regimes

Many emerging technologies are "dual use" in nature, meaning they can be applied to both civilian and military domains. This duality complicates regulation, verification, and enforcement. For instance, advances in synthetic biology, AI, or high-powered lasers have peaceful applications but also raise concerns about weaponization, proliferation, and the lowering of barriers to entry for state and nonstate actors alike (Marchant et al., 2011).

For instance, traditional arms control regimes that is designed in the Cold War era seems to be outdated in addressing these new threats. The collapse of the Intermediate-Range Nuclear Forces (INF) Treaty and the stagnation of discussions around new cyber or AI arms control agreements reflect deepening mistrust among great powers (Acton, 2020). Without updated legal frameworks and verification mechanisms, the risk of arms races in new domains increases, further destabilizing international security.

Future Projections: Scenarios for the Future of Humanity

The trajectory of international security in the 21st century is inextricably linked to technological evolution and the dynamics of great power rivalry. While the present moment is marked by strategic uncertainty and fragmentation, future developments could unfold across multiple pathways. This section explores three plausible scenarios that encapsulate different outcomes for humanity ranging from cooperative stabilization to dystopian fragmentation and post-human transformation each carrying profound ethical and existential implications. So, what are the circumstance?

Scenario 1: Multipolar Stability Through Cooperative Tech Governance

In this scenario, major powers are projected to recognize mutual risks posed by unregulated technological advancement and geopolitical confrontation, that could be central to a renewed commitment to multilateralism. Institutions such as the United Nations, G20, or new digital governance bodies could mediate agreements on AI norms, cyber conduct, and autonomous weapons bans. Tech enterprises, governments, and civil society could engage in multi-stakeholder frameworks to align innovation with ethical standards and global public goods (Floridi & Cowls, 2019).

In this context, multipolarity persists, but should be characterized by pragmatic cooperation rather than antagonism. States could regulate competition, particularly in the areas of confidence-building, digital arms control, and norms around data privacy and surveillance. This model mirrors historical precedents such as the Nuclear Non-Proliferation Treaty (NPT) and the Outer Space Treaty, adapted for a digital and AI-driven era (Taddeo & Floridi, 2018).

Scenario 2: Digital Cold War and Fragmented World Order

Alternatively, the absence of consensus on technological norms may entrench a bifurcated global order, with blocs led by the U.S. and China competing across ideological, technological, and economic lines. The global internet splinters into technospheres governed by incompatible standards such as the U.S. led open internet model versus China's state-controlled cyber sovereignty doctrine (Segal, 2020). Data localization, AI export bans, and competing digital currencies further deepen fragmentation.

Cyber arms races and proxy tech conflicts dominate international relations, with digital infrastructure becoming both the battlefield and the prize. Developing nations are pressured to align with rival tech stacks, intensifying digital inequality and strategic dependency (West, 2021). Trust in global institutions deteriorates, and the global commons space, climate, cyberspace becomes a contested terrain lacking collective stewardship.

Scenario 3: Technological Singularity and Post-Human Security Challenges

In a more radical future, the exponential acceleration of AI and biotechnology leads to a technological distinctiveness - a point at which machine intelligence surpasses human cognition, rendering traditional political, military, and ethical frameworks obsolete (Kurzweil, 2005). Human-AI integration, brain-computer interfaces, and genetic enhancements redefine the nature of identity, agency, and vulnerability.

Security challenges shift from state-centric threats to post-human risks such as algorithmic authoritarianism, cognitive manipulation, and existential dangers posed by misaligned superintelligence (Bostrom, 2014). The singularity may also collapse the distinction between civilian and military technologies, eroding traditional deterrence frameworks. States struggle to govern entities whose capabilities exceed human comprehension, raising profound issues about control, responsibility, and long-term survival.

Ethical Implications and Existential Risks

Each scenario outlined preceding, presents ethical dilemmas about autonomy, privacy, equity, and agency. Cooperative governance should demand balancing innovation with accountability, while a digital Cold War risks deepening systemic injustices. The singularity raises questions of moral status for non-human intelligences and whether humanity can or should cede decision-making power to machines (Tegmark, 2017).

More broadly, emerging technologies pose existential risks, for instance, AIinduced accidental wars, bioengineered pandemics, or runaway feedback loops in autonomous systems are possibilities. Institutions could therefore, encouraged to evolve from reactive crisis management to anticipatory governance that integrates ethics, foresight, and inclusive dialogue (Yudkowsky, 2008). Conceivably, the future of humanity may depend not only on strategic choices but on our collective ability to imagine and implement humane technological futures.

Policy Implications and Strategic Recommendations

The implication of negative human development in the expanse of technology could be dire, if not well regulated. Instructively, as the interplay between great power rivalry and rapid technological advancement reshapes international security, the imperative for innovative, inclusive, and anticipatory policy frameworks becomes more urgent. Without proactive governance, strategic instability, arms races, and ethical abuses may undermine global peace and the future of humanity. We, therefore, profiles key strategic suggestions aimed at addressing the systemic challenges identified in this discourse.

Reviving Multilateral Arms Control and Cyber Norms

The failure or erosion of Cold War period arms control regimes, coupled with the emergence of novel domains such as cyber and space, has created a normative vacuum. Revitalizing multilateral frameworks must be a central policy priority. This includes not only modernizing traditional treaties such as extending the New START, but advancing new agreements tailored to autonomous weapons, cyber operations, and AI systems (Acton, 2020).

In cyberspace, the development of binding international norms on state behavior, including commitments to avoid attacks on civilian infrastructure, is essential. The UN Group of Governmental Experts (GGE) and Open-Ended Working Group (OEWG) offer important platforms but must be supported by enforcement mechanisms and confidence-building measures (Tikk & Kerttunen, 2020).

With the unregulated state practice by Israel in the Middle East, Russia in Ukraine and the U.S hegemonic tendencies, it becomes persuasive to Strengthening Confidence-Building Measures Among the Great Powers.

Mistrust among major powers is however an issue here, as this would continue to fuel escalation and probably impedes cooperation. Confidence-building measures (CBMs) such as pre-notification of major cyber exercises, transparency on AI military deployments, and red lines around critical infrastructure could reduce the risk of miscalculation and unintended conflict (Gartzke & Lindsay, 2017).

Track II diplomacy, involving academic, military, and tech industry stakeholders, can complement official channels by building shared understanding around emerging technologies. Regional security organizations like the OSCE or ASEAN can also facilitate dialogue and localized CBMs, particularly in hotspots like Eastern Europe or the Indo-Pacific.

Promoting Inclusive Tech Governance Through the UN and Regional Bodies Technology governance must transcend geopolitical divides to reflect shared human values and democratic oversight. Global forums such as the UN's High-Level Panel on Digital Cooperation and UNESCO's Recommendation on the Ethics of AI offer blueprints for inclusive, human rights-centered tech policy (UNESCO, 2021).

To bridge the digital divide and empower the Global South, technology governance initiatives must ensure equitable access to infrastructure, participation in normsetting, and protection against technological dependencies or coercion. Publicprivate partnerships and inclusive multistakeholder dialogues are critical in shaping norms that prioritize transparency, accountability, and inclusivity (Pauwels, 2019).

Enhancing Human-Centered Approaches to Global Security is another strategy that could be adopted not only through strategic deterrence but also through ethical foresight, humanitarian principles, and sustainability. A human-centered security paradigm prioritizes human dignity, environmental protection, and the responsible use of emerging technologies. This entails regulating AI in alignment with human rights frameworks, addressing algorithmic bias and surveillance abuse, and ensuring that autonomous systems remain under meaningful human control (Cath, 2018). Long-term strategies should incorporate futures thinking and ethical impact assessments into security planning and innovation policies, fostering a more resilient and humane global order (Floridi, 2021).

Conclusion:

As we approach the mid-21st century, the interplay of great power rivalry and the accelerating pace of technological transformation defines the contours of international security. In this article, we have explored how emerging technologies such as artificial intelligence, cyber capabilities, and space weaponry are reshaping power dynamics among states, and how these technologies could either heighten strategic instability or provide new pathways for collaboration. We have also examined how shifting power relations exemplified by the U.S.-China rivalry, NATO-Russia tensions, and broader multipolarity pose both opportunities and risks for the international order.

The resurgence of great power rivalry has made traditional diplomatic frameworks increasingly ineffective in addressing the complexities of modern security. As global powers engage in technological competition, the risk of a new type of Cold War looms, characterized by digital and technological spheres of influence as exemplified by the Russia-Ukrainian conflict. This rivalry, combined with the growing impact of disruptive technologies, is undermining arms control agreements, challenging the norms of international conflict, and creating new forms of asymmetric warfare through cyber, space, and AI-powered capabilities.

Emerging technologies, while offering transformative potential for humanity, also raise significant challenges. The autonomous weaponization of AI, vulnerabilities in cyber infrastructure, and the militarization of space have altered the traditional calculus of warfare, where speed and precision now define military success. Furthermore, the dual-use nature of many technologies complicates efforts to regulate their military application, exacerbating the risk of unintended escalation.

The future trajectory of international security hinges on the ability of global leaders and institutions to manage technological rivalry responsibly. A key recommendation emerging from this analysis is the urgent need to reinvigorate multilateralism, particularly in the domains of arms control and technology governance. Strategic cooperation on cyber norms, AI regulation, and space policy must replace zero-sum competition to avert technological arms races that could destabilize the global order.

Multilayered global governance structures, such as the United Nations and other regional bodies need to evolve to address the non-traditional nature of modern threats. By establishing transparent dialogues, confidence-building measures, and enforceable treaties, nations can prevent the escalation of tensions into full-scale conflict. Furthermore, human-centered ethical frameworks must be at the core of all discussions around emerging technologies to ensure that their deployment serves the collective good rather than the strategic interests of a few.

Ultimately, the prospects for international security and human flourishing are inextricably linked. Successfully navigating this intricate and interdependent landscape requires robust multilateral cooperation, principled governance, and an unwavering commitment to the enduring viability of peace. As technological innovation increasingly blurs the line between the human and the artificial, safeguarding human dignity and core ethical standards becomes paramount. By embedding normative safeguards into the development and deployment of emerging technologies, we can ensure that innovation amplifies, rather than undermines our shared global future.

References:

- 1. Allen, G. C., & Chan, T. (2017). Artificial intelligence and national security. RAND Corporation.
- 2. Allison, G. (2017). Destined for war: Can America and China escape Thucydides' trap? Houghton Mifflin.
- 3. Acton, J. M. (2020). Reclaiming strategic stability. In L. Nardon (Ed.), Emerging strategic technologies and arms control (pp. 17–29). IFRI. www.ifri.org
- 4. Acton, J. M. (2020). Reclaiming strategic stability. In L. Nardon (Ed.), Emerging strategic technologies and arms control (pp. 17–29). IFRI. www.ifri.org
- 5. Allison, G. (2017). Destined for war: Can America and China escape Thucydides' trap? Houghton Mifflin Harcourt.
- 6. Borrie, J., & Crootof, R. (2019). Law, technology, and war. American Journal of International Law, 113(1), 1–10.
- 7. Finnemore, M., & Hollis, D. (2016). Constructing norms for lethal autonomous weapons systems. International Review of the Red Cross, 98(1), 87–104.
- 8. Singer, P. W., & Friedman, A. (2014). Cybersecurity and cyberwar: What everyone needs to know. Oxford University Press.
- 9. Taddeo, M., & Floridi, L. (2018). Regulate artificial intelligence to avert cyber arms race. Nature, 556(7701), 296–298.

- 10. United Nations Office for Disarmament Affairs. (2020). Securing our common future: An agenda for disarmament. www.un.org
- 11. Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
- 12. Boulanin, V., & Verbruggen, M. (2017). Mapping the development of autonomy in weapon systems. Stockholm International Peace Research Institute (SIPRI). www.sipri.org
- 13. Boulanin, V., & Verbruggen, M. (2017). Mapping the development of autonomy in weapon systems. Stockholm International Peace Research Institute (SIPRI). www.sipri.org
- 14. Buzan, B., & Hansen, L. (2009). The evolution of international security studies. Cambridge University Press.
- 15. Buzan, B., Wæver, O., & de Wilde, J. (1998). Security: A new framework for analysis. Lynne Rienner Publishers.
- 16. Bown, C. P. (2021). US-China trade war tariffs: An up-to-date chart. Peterson Institute for International Economics.
- 17. Gordon, P. H. (2018). Trump, Russia, and the transatlantic alliance: Drift or deliberate strategy? Foreign Affairs, 97(3), 10–18.
- 18. O'Hanlon, M. E. (2019). Does America need a foreign policy rethink? Brookings Institution Press.
- 19. Smith, J. A. (2019). Unilateralism reborn: The Trump administration and international order. International Organization, 73(4), 789–816.
- 20. Wright, T. (2020). The world and U.S. foreign policy: Presidential withdrawals and their consequences. Oxford University Press.
- 21. Cath, C. (2018). Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180080.
- 22. Charap, S., & Shapiro, J. (2022). Strategic stability and the Russia–Ukraine war. Survival, 64(3), 7–30.
- 23. Chaudhuri, R., & Farrell, H. (2022). The return of geopolitics in the Global South. International Affairs, 98(5), 1685–1704.
- 24. Chen, Z. (2021). China's dual circulation strategy and implications for global economic governance. Asia Europe Journal, 19, 165–181.
- 25. Cohn, C. (1987). Sex and death in the rational world of defense intellectuals. Signs: Journal of Women in Culture and Society, 12(4), 687–718.
- 26. Floridi, L. (2021). The ethics of artificial intelligence for a human-centric digital society. Nature Machine Intelligence, 3(1), 1–2.
- 27. Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1).

- 28. Friedberg, A. L. (2018). Competing with China: A strategy for the United States. Survival, 60(3), 7–64.
- 29. Gartzke, E., & Lindsay, J. R. (2017). Thermonuclear cyberwar. Journal of Cybersecurity, 3(1), 37–48.
- 30. Giles, K. (2016). Russia's 'new' tools for confronting the West: Continuity and innovation in Moscow's exercise of power. Chatham House. www.chathamhouse.org
- 31. Giles, K. (2016). Russia's 'new' tools for confronting the West: Continuity and innovation in Moscow's exercise of power. Chatham House.
- 32. Götz, E. (2022). Russia's revisionist foreign policy and the war in Ukraine. European Security, 31(1), 1–21.
- 33. Dall'Agnol, A. C., & Cepik, M. (2021). The demise of the INF Treaty: A path dependence analysis. Revista Brasileira de Política Internacional, 64(2).
- 34. U.S.-China Economic and Security Review Commission. (2019, February 1). China and the INF Treaty: Implications for U.S. security and arms control. www.uscc.gov
- 35. Heyns, C. (2017). Report of the Special Rapporteur on extrajudicial, summary or arbitrary executions. United Nations Human Rights Council.
- 36. Horowitz, M. C. (2018). The algorithms of war: AI, the diffusion of power, and ungoverned spaces. Foreign Affairs, 97(6), 38–46.
- 37. Ikenberry, G. J. (2011). Liberal leviathan: The origins, crisis, and transformation of the American world order. Princeton University Press.
- 38. Marksteiner, A. (2022). The United States focuses on military research and development. In World military expenditure passes \$2 trillion for first time (pp. 2–3). Stockholm International Peace Research Institute.
- 39. Stockholm International Peace Research Institute. (2022). Trends in world military expenditure, 2021 (Fact sheet). www.sipri.org
- 40. Stockholm International Peace Research Institute. (2024). Global military spending surges amid war, rising tensions and insecurity (Press release, April 24). www.sipri.org
- 41. Ikenberry, G. J. (2020). A world safe for democracy: Liberal internationalism and the crises of global order. Yale University Press.
- 42. Layne, C. (2018). The US-China power shift and the end of the Pax Americana. International Affairs, 94(1), 89-110.
- 43. Mearsheimer, J. J. (2014). The tragedy of great power politics (2nd ed.). W. W. Norton & Company.
- 44. Kania, E. B., & Costello, J. (2021). Quantum hegemony? China's ambitions and the challenge to U.S. innovation leadership. Center for a New American Security. www.cnas.org

- 45. Kaplan, R. D. (2020). The return of Marco Polo's world: War, strategy, and American interests in the twenty-first century. Random House.
- 46. Kaspersen, A., & Lindsey, C. (2020). The weaponization of emerging technologies: A new challenge to global governance. In United Nations Office for Disarmament Affairs (UNODA), UNODA Occasional Papers, 36.
- 47. Keohane, R. O. (1984). After hegemony: Cooperation and discord in the world political economy. Princeton University Press.
- 48. Keohane, R. O., & Nye, J. S. (1977). Power and interdependence: World politics in transition. Little, Brown.
- 49. Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Viking Press.
- 50. Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Viking Press.
- 51. Marchant, G. E., Allenby, B. R., & Herkert, J. R. (2011). The growing gap between emerging technologies and legal—ethical oversight: The pacing problem. In G. E. Marchant et al. (Eds.), The growing gap between emerging technologies and legal—ethical oversight (pp. 3–20). Springer.
- 52. Mastro, O. S. (2019). The stealth superpower: How China hid its global ambitions. Foreign Affairs, 98(1), 31–39. www.foreignaffairs.com
- 53. Mearsheimer, J. J. (2001). The tragedy of great power politics. W. W. Norton & Company.
- 54. Mearsheimer, J. J. (2019). The great delusion: Liberal dreams and international realities. Yale University Press.
- 55. Montgomery, E. B., & Edelman, E. S. (2020). Rethinking security: Great power competition and military innovation. The Washington Quarterly, 43(2), 7–26.
- 56. Morgenthau, H. J. (1948). Politics among nations: The struggle for power and peace. Alfred A. Knopf.
- 57. Patrick, S. (2021). When the system fails: COVID-19 and the costs of global dysfunction. Foreign Affairs, 100(2), 40–50. www.foreignaffairs.com
- 58. Rid, T. (2020). Active measures: The secret history of disinformation and political warfare. Farrar, Straus and Giroux.
- 59. Rid, T. (2020). Active measures: The secret history of disinformation and political warfare. Farrar, Straus and Giroux.
- 60. Rolland, N. (2021). China's vision for a new world order. The National Bureau of Asian Research. www.nbr.org
- 61. Sanger, D. E. (2018). The perfect weapon: War, sabotage, and fear in the cyber age. Crown Publishing.
- 62. Scharre, P. (2018). Army of none: Autonomous weapons and the future of war. W. W. Norton & Company.

- 63. Segal, A. (2020). The coming tech cold war with China. Foreign Affairs, 99(4), 10–18. www.foreignaffairs.com
- 64. Segal, A. (2020). The coming tech cold war with China. Foreign Affairs, 99(4), 10–18. www.foreignaffairs.com
- 65. Taddeo, M., & Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751–752.
- 66. Taddeo, M., & Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751–752.
- 67. Tannenwald, N. (2005). Stigmatizing the bomb: Origins of the nuclear taboo. International Security, 29(4), 5–49.
- 68. Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. Knopf.
- 69. Waltz, K. N. (1979). Theory of international politics. McGraw-Hill.
- 70. Wendt, A. (1999). Social theory of international politics. Cambridge University Press.
- 71. West, D. M. (2021). The future of work and the digital divide. Brookings Institution. www.brookings.edu
- 72. West, D. M. (2021). The future of work and the digital divide. Brookings Institution. www.brookings.edu
- 73. Wright, D. (2020). Space warfare and strategic stability. Bulletin of the Atomic Scientists, 76(1), 26–31.
- 74. Wright, D. (2020). Space weapons and strategic stability. In Sauer, T., & Pretorius, J. (Eds.), nuclear weapons and arms control in the 21st century (pp. 93–112). Routledge.
- 75. Yudkowsky, E. (2008). Artificial intelligence as a positive and negative factor in global risk. In N. Bostrom & M. Ćirković (Eds.), Global catastrophic risks (pp. 308–345). Oxford University Press.
- 76. Yudkowsky, E. (2008). Artificial intelligence as a positive and negative factor in global risk. In N. Bostrom & M. Ćirković (Eds.), Global catastrophic risks (pp. 308–345). Oxford University Press.