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Abstract 

In this study, the stability and Hopf bifurcation analysis of periodic solution of Duffing Equation were 

considered. Also other type of bifurcation like the saddle-node, trans-critical and pitch fork were also 

studied. The eigen value, Jacobian and Floquet theory were used to analyse both the stability and Hopf 

bifurcation of the periodic solutions of the equilibrium points. The result showed that equilibria points 

have at most three T-periodic solutions under a strong damped conditions due to the cubic non-

linearities. The bifurcation points  showed one critical and another subcritical.    

Keywords: Nonlinear, Duffing oscillator, Chaos, Poincare section, Strange attractors, Homoclinic, Hopf 
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Introduction 

Consider the Duffing Oscillator described by the Differential equation  �̈� + α�̇�-𝜏2𝑥 + 𝛽𝑥3  = 𝑓 𝑐𝑜𝑠 𝜔𝑡…….            𝑓 ≥ 0      

(1.1) 

with initial conditions x(0) = x(2π) �̇�(0) = �̇�(0) 

             

(1.2) 

Where α, β, τ2, ω, 𝑡 , 𝑓 and 𝑥represents damping coefficient, nonlinear (cubic) stiffness parameter, the 

linear stiffness parameter, the frequency, the independent variable, the strength of the driving force 

and the displacement respectively, which differ from the elementary example of a forced and damped 

harmonic oscillator (�̈� + α�̇�-𝜏2𝑥 = 𝑓 𝑐𝑜𝑠 𝜔𝑡) only by the nonlinear terms 𝛽𝑥3, which changes the 

dynamics of the system drastically.  

The Duffing equation is a nonlinear, non-autonomous equation introduced by [3] as a dynamical 

equation that exhibit chaotic behaviour and as a harmonic oscillator modified by a cubic nonlinearity 

and driven harmonically. This equation describe the motion of a damped oscillator with more complex 

potential than in simple harmonic motion. From mathematical point of view, this equation is second 

nonlinear equation, the equation is used to model”hard and soft spring” and the dynamic of a point 

mass in  double well potential and can be regarded as a periodic forced steel beam which is deflected 

towards the two magnets. 

Innovations 
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Moreso, its application are seen in the modelling of variety of physical processes in mechanical and  

electrical engineering and in physics which describes the soliton solution to important physics models 

such as the Kdv equation, mKdv equation, sine-Gordon, non-linear Schrodinger equation and shallow 

water wave equation. 

 Due to the wide range of application of the Duffing equation in different field of endeavour, Many 

researchers have worked on the Duffing equation using different methods which yields amazing 

results. See [1],[2], [3], [5], [17], [19] and [21]. 

Stability is a qualitative property for Differential Equations that is crucial in both linear and nonlinear 

analysis. It describes the behaviour of the system when the system  undergo small changes. 

Analytically, stability is determined by interval placed on the given Differential Equation. For linear 

system with one equilibrium point, but for nonlinear system with more than two parameters, the 

search for the stability and analysis of the equilibrium point becomes a challenge.  

Empasis on stability has been researched on and discussed by many authors. For instance see [2], [5], 

[6], [7], [8] and [14] and their reference therein. For other researchers who have worked on the 

stability of non-linear systems, see [17], [18], [19], [20], [22], [23] and [24] 

Motivated by the above literature, the goal of this paper is to investigate the stability analysis of 

periodic solution of Duffing oscillator. The paper further investigated the Hopf bifurcation analysis of 

the periodic solution of the  Duffing Oscillator and the behaviour of the system was analysed using the 

MATHCAD software. 

 

2. Preliminaries 

Bifurcation theory 

A bifurcation occurs when a small smooth change made to the parameter values (the bifurcation 

parameter) of a system causes a sudden “qualitative” or topological change in behaviour. Generally, at 

a bifurcation, the local stability properties of equilibria, periodic orbits or other variant sets 

changes.[4]. 

 

Bifurcation of dimension one 

Consider the scalar differential equations of the form  𝑑𝑢𝑑𝑡 = 𝑓(𝑢, 𝜇)          

2.1 

Where u is a real valued function of the the time t, the vector field f is real valued depending, besides u, 

upon a parameter μ. The parameter μ is the bifurcation parameter. We suppose that equation 2.1 is 

well posed and satisfies the hypothesis of the Cauchy-Lipschitz theory, such that for each initial 

condition  there exist a unique solution of (2.1). Furthermore we assume that the vector field is of class 𝐶𝑘, 𝑘 ≥ 2, in a neighbourhood of (0,0) satisfying  f(0,0) = 0, 𝜕𝑓𝜕𝑢 (0,0) = 0        

2.2 

The first condition shows that u=0 is an equilibrium of equation (1) at μ = 0. we are interested in local 

bifurcations that occur in the neighbourhood of this equilibrium when we vary the parameter μ. The 

second condition is a necessary, but not sufficient, condition for the appearance of local bifurcation at μ = 0 

Remarks 1.1 

Suppose that the second condition is not satisfied: 
𝜕𝑓𝜕𝑢 (0,0) ≠ 0 
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 A direct application of the implicit function theorem  shows that the equation f(u, μ) = 0 posses a 

unique solution u = u(μ) in a neighbourhood of 0, for small enough μ. In particular u=0 is the only 

equilibrium of the equation (2.1) in a neighbourhood of zero when μ = 0, and the same property hols 

for μ small enough. Furthermore, the dynamics of (2.1) in a neighbourhood of 0 is qualitatively the 

same for all sufficiently small values of the parameter μ: no bifurcation occurs for small values of μ. 

Saddle-Node bifurcation  

Theorem 1.1 (saddle-node bifurcation). Assume that the vector field f is of class 𝐶𝑘, 𝑘 ≥ 2, in a 

neighbourhood of (0,0) and satisfies: 𝜕𝑓𝜕𝜇 (0,0) = : 𝑎 ≠ 0, 𝜕2𝑓𝜕𝑢2 (0,0) = : 2𝑏 ≠ 0       

2.3 

The following properties hold in the neighbourhood of 0 in ℝ for small enough μ: 
i. If ab < 0 (resptively ab > 0) the differential equation has no equilibria  for μ < 0 (resptively μ > 0), 

ii. If ab < 0 (resptively ab > 0) the differential equation posses two   equilibria  μ ± (ϵ), ϵ = √|μ| for > 0 (resptively μ < 0), with opposite stabilities. Furthermore, the map ϵ → u ± (ϵ) is of class 𝐶𝑘−2 in a neighbourhood of 0 in ℝ, and u ± (ϵ) = O(ϵ). then for equation 

(2.1), a saddle-node bifurcation occurs at μ = 0. 

A direct consequence of conditions (2.3) is that f has the expansion: f(u, μ) = aμ +  bu2 + o(|μ| +  u2) as (u, μ) → (0,0)     

2.4 

 

Pitchfork bifurcation 

Theorem 2.2: consider a vector field f of class 𝐶𝑘, 𝐾 ≥ 3, in a neighbourhood of (0,0) that satisfies the 

condition (2.2), and that it is odd with respect to u f(−u, μ) = −f(u, μ)          

2.5 

 Furthermore assume that  𝜕2𝑓𝜕𝜇𝜕𝑢 (0,0) = : 𝑎 ≠ 0, 𝜕3𝑓𝜕𝑢3 (0,0) = : 6𝑏 ≠ 0       

2.6 

i If ab < 0 (resptively ab > 0) the differential equation has one equilibrium  

 for u = 0 for μ < 0 (resptively μ > 0). this equilibrium is stable when   

 b< 0 and unstable when b > 0. 

Ii. If ab < 0 (resptively ab > 0)  the differential equation possesses the trivial  

 equilibrium u = 0 and two non trivial equilibria u ± (ϵ), ϵ = √|μ| for μ > 0 (respectively μ <0),which are symmetric, 𝑢+(𝜖) = −𝑢−(𝜖). The map  ϵ → u±(ϵ)  is of class 𝐶𝑘−3 𝑖𝑛 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢ℎ𝑜𝑜𝑑 0 𝑖𝑛 ℝ, and u ± (ϵ) = O(t). The non trivial equilibria are stable when b < 0 

and unstable when b > 0where as the trivial equilibrium has opposite stability. 

Then for equation (2.1), a pitchfork bifurcation occurs at μ = 0. 

A direct consequence (2.2), (2.5) and  (2.6) is that  f has the Taylor expansion: f(u, μ) = uh(u2, μ)h(u2, μ) = aμ + bu2 + 0(|μ| + u2) as (u, μ) → (0,0)  where h is of class 𝐶(𝑘−1) 2⁄  in 

enough  a neighbourhood of (0,0). 

Transcritical bifurcation  

Theorem 2.3: consider the vector field f of class 𝐶𝐾 , 𝑘 ≥ 2, in a neighbourhood of (0,0) and that it 

satisfies condition 2.2, and also: 
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𝜕2𝑓𝜕𝜇𝜕𝑢 (0,0) = : 𝑎 ≠ 0, 𝜕2𝑓𝜕𝑢2 (0,0) = : 2𝑏 ≠ 0       

2.7 

The following properties hold in the neighbourhood of 0 in ℝ for small enough μ 

i. The differential equation possesses the trivial equilibrium u=0 and the non trivial 

equilibrium 𝑢0(𝜇) where the map μ → u0(μ) is of the class 𝐶𝑘−2 in a neighbourhood of 0 in ℝ, 

and u0(μ) = O(μ). 
ii. If aμ < 0 (resptively aμ > 0)  the trivial equilibrium u=0 is stable (respectively 

unstable) whereas the nontrivial equilibrium u0(μ) is unstable(respectively stable). 

Then for equation (2.1), a transcritical bifurcation occurs at μ = 0. A direct consequence of 

condition (2.2) and (2.7) is that f has the Taylor expansion: f(u, μ) = aμu + bu2 + 0(u|μ| + u2) as (u, μ) → (0,0) 

Bifurcation of Dimension 2: Hopf bifurcation 

Here we consider Differential Equation  in ℝ2, 𝑑𝑢𝑑𝑡 = 𝐹(𝑢, 𝜇)           

2.8 

Here the unknown u is given a real-valued function that takes values in ℝ2, and the vector field F is 

real-valued depending, besides u, upon a parameter μ. The bifurcation parameter. We assume that the 

vector field is of class 𝐶𝑘, 𝑘 ≥ 3, in a neighbourhood  of (0,0) satisfying: F(0,0) = 0           

2.9 

This condition ensures that u=0 is an equilibrium of equation (2.1) at μ = 0. The occurrence of a 

bifurcation is in this case determined by linearization of the vector field at (0,0): L = DuF(0,0) 

Which is a linear operator acting in ℝ2. When L has eigenvalues on the imaginary axes, bifurcation may 

occur at μ = 0. We focus in this section on the case where L has a pair of complex conjugated purely 

imaginary eigenvalues. This is called the Hopf bifurcation (or Andronov-Hopf bifurcation) 

 

Hypothesis 2.1: 

Assume that the vector field is of class 𝐶𝑘 , 𝑘 ≥ 5, in a neighbourhood of (0,0), that is satisfies (2.9) and 

the two eigenvalues of the linear operator L are ±iω for some ω > 0. 
We consider the eigenvector and associated to the eigenvalue iω of L, 

Lξ = iωξ 

If 𝐿∗ is the adjoint operator of L then we define 𝜉∗ as the eigenvector of 𝐿∗ satisfying: 𝐿∗𝜉∗ = iω𝜉∗,    〈𝜉, 𝜉∗〉 = 1 

Where 〈∙,∙〉 denotes the Hermitian scalar product in ℂ2. consider the Taylor extension of the vector field 

F in (2.8): 

F(U,μ)= : ∑ μqFrq(U(r)) + o(|μ| + ‖U‖k)1≤r+q≤  

Where 𝐹𝑟𝑞 is the r-linear symmetric operator from (ℝ2)𝑟 to  ℝ2 𝐹𝑟𝑞=
1𝑟!𝑞! 𝜕𝑞𝜕𝜇𝑞 𝐷𝑢𝑟𝐹(0,0) 

 We define the coefficients a = 〈F11ξ + 2F20(ξ, −L−1F01), ξ∗〉       

 

2.10 
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b = 〈2F20(ξ, (2iω − L)−1F20(ξ, ξ) + 2F20(ξ, −2L−1F20(ξ, ξ̅) + 3F30(ξ, ξ⏞ ,∞ ξ̅)), ξ∗〉   2.11 

 

Hypothesis 2.2 

We assume that the complex coefficients a and b have non zero real parts, 𝑎𝑟 ≠ 0 𝑎𝑛𝑑 𝑏𝑟 = 0. The 

coefficient  𝑏𝑟 = 𝑅𝑟(𝑏) is called the Lyapunov coefficient. 

Definition 1.2 

1. A non constant solution to the differential equation (2.8) is periodic if it exist T> 0 such that U(t) = U(t + T). The image of the interval [O,T] under U in the state space ℝ2 is called the periodic 

orbit. 

2. A periodic orbit Γ on a plane is called a limit cycle if it is theα − limit set of ω −limit set of 

some point z not on the periodic orbit, that is, the set of accumulation points of either forward or 

backward trajectory through z, is exactly Γ. Asymptotically stable and unstable periodic orbits are 

examples of limit cycles.  

3.  

Theorem 2.1 (Hopf Bifurcation) 

Assume that hypothesis 2.1 and 2.2 holds. Then, for the differential equation(2.1) a Superciritcal 

(respectively Subcritical) Hopf Bifurcation occurs at μ = 0 when 𝑏𝑟 < 0 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑏𝑟 > 0). More 

precisely, the following properties hold in a neighbourhood of O in  ℝ2 for small enough μ: 

i. If 𝑎𝑟𝑏𝑟 < 0 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑟𝑏𝑟 > 0) the differential equation has precisely one equilibrium u( μ) for  μ < 0 (respectively μ > 0) with  μ > 0 with u(0)=0. This equilibrium is stable when 𝑏𝑟 < 0 and 

unstable when 𝑏𝑟 > 0. 

ii. If 𝑎𝑟𝑏𝑟 < 0 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑟𝑏𝑟 > 0)  the differential equation possesses for u( μ ) for  μ < 0 (respectively μ > 0) and equilibrium u(μ) and a unique periodic orbit 𝑈∗(𝜇) = 𝑂(√|𝑈|), which 

surrounds this equilibrium. The periodic orbit is stable when    𝑏𝑟 < 0 and unstable when 𝑏𝑟 > 0, 

whereas the equilibrium has the opposite stability. 

Remark 2.2 

The number of equilibria of the differential equation stays constant upon varying μ in neighbourhood 

of O. The dynamics of the bifurcation change at the bifurcation point μ = 0. Such bifurcation, are called 

dynamic bifurcations, whereas those in which the number of equilibria changes are also called steady 

bifurcation. 

 

Hopf bifurcation theorem for vector fields 

Let 𝑋𝜇  be a 𝐶𝑘 (𝑘 ≥ 4) vector field on ℝ2 such that  𝑋𝜇(0) = 0 for all μ and X=(𝑋𝜇 , 0) is also 𝐶𝑘. Let 

dXμ(0,0) have two distinct, simple complex conjugate eigenvalues λ(μ) and 𝜆(𝜇)̅̅ ̅̅ ̅̅  such that μ < 0,  Re λ(μ) < 0 , for μ = 0, Re λ(μ) = 0, and  for μ > 0, Re λ(μ) > 0. Also assume 
𝑑Re λ(μ)𝑑𝑢 |𝜇=0 > 0. Then there 

is a  𝐶𝑘−2 function μ: (−ϵ, ϵ) → ℝ such that (𝑋1, 0, 𝜇(𝑋1)) is on a closed orbit of period ≈ 2π|λ(0)| and 

radius growing like √𝜇, of the flow of X for 𝑋1 ≠ 0 and such that μ(0) = 0. There is a neighbourhood u 

of (0,0,0) in ℝ3 such that any closed orbit in u is one of the above. 

Furthermore, if 0 is a ‘vague attractor’ (asymptotically stable) for 𝑋𝑜, 𝑡ℎ𝑒𝑛 𝜇(𝑋1) > 0 for all 𝑋1 = 0 and 

the orbit is attracting. 

If, instead of a pair of conjugate eigenvalues crossing the imaginary axis, a real eigenvalue crosses the 

imaginary axis, two stable fixed point will branch off instead of a closed orbit. 
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Center manifold theorem 

The center manifold theorem is one of the important bifurcation theorem and the key job is that it 

enables one to reduce to a finite dimensional problem. In the case of a Hopf bifurcation theorem, it 

enables a reduction to two dimension without loosing any information concerning stability.  

Theorem 2.2 (Center manifold theorem): Let ψ be a mapping of a neighbourhood of zero in a Banach 

space Z into Z. We assume that ψ is 𝐶𝑘+1, k≥ 1 and that ψ(0) = 0. we further assume that Dψ(0) has 

spectral radius 1 and that the spectrum of Dψ(0) splits into a part on the unit circle and the remainder 

which is at a non-zero distance form the unit circle. Let Y denote the generalized eigenspace of Dψ(0) 

belonging to the part of the spectrum on the unit circle; assume that Y has dimension d< ∞ then there 

exist a neighbourhood v of O in Z and a 𝐶𝑘 submanifold M of v of dimension d, passing through O and 

tangent to Y at O. such that  

a. Local invariance: If  x∈ M and ψ(x) ∈ V then ψ(x) ∈ M 

 

b. Local attractively: If ψ𝑛(𝑥) ∈ 𝑉 for every n=0,1,2,…, then as n→ ∞, the distance from ψ𝑛(𝑥) to 

M→ 0. this holds automatically if Z is finite dimensional or, more generally, if Dψ(0) is compact. 

 

Existence and Uniqueness 

1. Lipschitz conditions 

Consider 
𝑑𝑦𝑑𝑡 = 𝑓(𝑡, 𝑦)  

Y(𝑡0)=𝑦0 

 Where f is a differentiable function. We would like to know when we have existence of a unique 

solution for given initial date. One condition on f which guarantees this in the following 

Given a subset S of the (t,y)-plane, we say that f is lipschitz with respect to y on the domain s if there 

exist some constant k such that  |𝑓(𝑡, 𝑦2) − 𝑓(𝑡, 𝑦1)| ≤ 𝑘|𝑦2 − 𝑦1| for every point (t,𝑦1) and (t,𝑦2) in S. The constant K is called the 

Lypschitz constant. 

Example 2.1 Let f(t,y)=𝑡𝑦2 

then since |𝑓(𝑡, 𝑦2) − 𝑓(𝑡, 𝑦1)| ≤ 𝑓|𝑦2 + 𝑦1||𝑦2 − 𝑦1| is not bounded by any constant times |𝑦2 − 𝑦1| , f 
is not Lipschitz continuous with respect to y on the domain ℝXℝ. However f is lipschitz on any 

rectangle  ℝ = [a, b]x[cxd] since we have t|y2 + y1| ≤ 2max{|a|, |b|}.max{|c|, |d|} on ℝ. 

1. d(x, y) ≥ 0 

2. d(x, y) = 0 iff x = y 

3. d(x, y) = d(y, x) 

4. d(x, z) = d(x, y)  + d(y,
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Floquet theory:  

The fundamental matrix x(t) of  �̇� = 𝐴(𝑡)𝑥̇           2.12 

With x(t) = 1 , has a Floquet normal form  x(t) = Q(t)eBt         2.13 

where Q ∈ C1(ℝ) is T periodic and the matrix B, B ∈ ℂnxnsatisfies the equation  C = X(T) = eBT         2.14 Q(0) = 1 and Q(t)  is an invertible matrix for all t. 

PROOF: 

By lemma 2.5, there exist a non singular constant matrix C with x(t+T)= X(t)C using  

X(t+T) = X(t)X(T) = x(t)C and Lemma 2.6 gives C=X(T)=−𝑒𝐵𝑇  

For some matrix B, if Q(t) =  X(t)eBT, then for all t, Q(t + T) =  x(t +  T)e−B(t+T) = x(t)Ce−Bte−BT 

     = x(t)eBTe−Bte−BT 

     = x(t)e−Bt 
     = Q(t) 

This means that  x(t) = Q(t)eBt where  Q ∈ C1(ℝ) is T-periodic and x(0) = X(0)e0 = 1 

The matrix 𝑒−𝐵𝑡  is invertible for all t, because exponential of square matrices are invertible and 

x(t) is invertible Hence, Q(t) is invertible. 

Lemma 2.3 

If x(t) is a fundamental matrix of (1), then so is  Y(t) = x(t)B for non singular constant matrix B.  

Lemma 2.4 

If x(t) is a fundamental matrix of (1), then so is  Y(t) = X(t + T)  

Lemma 2.5 

If x(t) is a fundamental matrix of �̇� = 𝐴(𝑡)𝑥 𝑏𝑦 𝑙𝑒𝑚𝑚𝑎  2.4, Y(t) = X(t + T)  is a fundamental 

matrix of (1), then there exist a non singular constant matrix C with  X(t + T) =  X(t)C        

 (2.15) 

Floquet Multiplier 

We continue using the fundamental matrix X(t) for (1) in Lemma 2.5, we proved that X(t + T) =  X(t)C 

Where C is a non singular constant matrix. Recall in (5) C = C(0) = x−1(0)Y(0) = x−1(0)x(T)      (2.16) 

This C is known as the monodromy matrix. 

Definition 2.3 

The eigenvalues of the monodromy matrix are called the Floquet multiplier of (1) 

Definition 2.4 

The eigenvalues of the matrix B of the Floquet form x(t) = Q(t)eBt , are called the Floquet 

exponents of (1). Since the monodromy matrix is non singular, its eigenvalues are non zero, 

therefore, we can state the following: 

Corollary 2.5 

Let 𝜆1, 𝜆2, . . . , 𝜆𝑛  be the Floquet multipliers and 𝜇1, 𝜇2, . . . , 𝜇𝑛  be the Floquet exponents for (1), we 

can write  λj = eμjt  for all j= 1,…,n 
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Stability of the Floquet System 

Floquet multipliers are very useful in stability analysis of periodic system. Recall the following 

definitions. 

Definition 3.5: 

An eigenvalue λ of A is simple if its algebraic multiplicity equals 1. 

Definition 3.6: 

Let λ be an  eigenvalue of a matrix A  the geometric multiplicity of λ is dim(Null (A-λΙ)) in order 

words, the number of linearly independent eigenvector associated with λ. 

Definition 3.7: 

An eigenvalue λ of A is semi simple if its geometric multiplicity equals its algebraic. A simple 

eigenvalue is always semi-simple. But the converse is not true.  

Definition 3.8 

Consider the system �̇� = 𝐴(𝑡)𝑥  𝑖𝑛 𝑣 = [𝑡0, ∞]     (2.17) 

and assume A(t) is T periodic and continuous in V. The solution ψ(t) to system (2.12) is 

1. Stable on v if for every ϵ > 0, there exist a δ > 0, such that  
 |𝛹(𝑡0) − 𝑥(𝑡0)| < 𝛿 implies that  |𝛹(𝑡) − 𝑥(𝑡)| < 𝜖, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 t≥ 0 

And the solution x(t) is defined for all t ∈ v 

2. Asymptotically stable on v If it is stable and if in addition  lim𝑡→∞|𝜓(𝑡) − 𝑥(𝑡)| ⟶ 0 

3. Unstable if it is not stable on v. it can be proven that the following stability condition 

hold for the Floquet system. 

 

Theorem 2.10 

Assume 𝜆1, 𝜆2, . . . , 𝜆𝑛 are Floquet multipliers of system  

1. Then the zero solution of (1) is 

i. Asymptotically stable on [0,∞) if and only if |𝜆: | < 1 for i=1,…,n 

 Ii. Stable on [0, ∞) if |𝜆𝑗| ≤ 1 for all I=1,…,n and whenever |𝜆𝑗| = 1, 𝜆𝑗 is a   

                           semi-simple eigen value 

 iii.  Unstable in all other cases 

It should be noted that for the Floquet exponents, the conditions |𝜆𝑗| < 1, |𝜆𝑗| ≤ 1, |𝜆𝑗| > 1 is 

equivalent to Re μj < 0, Re μj ≤ 0, and Re μj > 0 

 

Eigenvalue 

Eigenvalue are a special set of scalars associated with a linear system of equation (ie a matrix 

equation) that are sometimes known as characteristic roots, characteristic value (Hofman 

&Kunac 1971), proper value, or latent roots (Marcus & Minc 1988, p.144) 

Theorem 2.1 

The following gives the link between the characteristic polynomial of a matrix A and its 

eigenvalues. If A is an nxn matrix and λ is a complex number the the following are equivalent 

a. λ is an eigenvalue of A 

b. The system of equation (A-λΙ=0) has a trivial solution 

c. There is a non zero vector X in ℂ𝑛  such that Ax=λx 

d. λ is a solution of the characteristic equation  det(𝐴 − 𝜆𝛪) . Some coefficient of the 

characteristic polynomial of A have a specific shape. The following theorem gives the information 

about it.  

 

Theorem 2.1.2 

If A is an n x n matrix, then the characteristic polynomial P(λ)  of A has degree n, the coefficient of 𝜆𝑛  𝑖𝑠 (−1)𝑛, the coefficient of 𝜆𝑛 +1 is (−1)𝑛 −1 trace (A) and the constant term is det(a), where 
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trace (A)=𝑎11  +  𝑎22 +. . . + 𝑎𝑛𝑛 . In some structured matrices, eigenvalues can be read as shown 

in theorem 2.1.3. 

 

Theorem 2.1.3 

If a is an nxn triangular matrix (upper triangular, lower triangular, or diagonal), then the 

eigenvalues of A are entries of the main diagonal of A. 

Cayley-Hamilton’s theorem is one of the most important statements in linear algebra. The 

Theorem states that 

 

Theorem 2.1.4 

Substituting the matrix A for λ in characteristic polynomial of A, we get the result of zero matrix 

ie, P(A)=0 

 

Jacobian Theorem 

If u and v are functions of the two independent variables of x and y,  

the determinant (𝜕𝑢𝜕𝑥𝜕𝑢𝜕𝑦𝜕𝑣𝜕𝑥𝜕𝑣𝜕𝑦) is called the Jacobian of u,v with respect to x,y and is written as  

𝜕(𝑢,𝑣)𝜕(𝑥,𝑦)  𝑜𝑟 𝐽(𝑢,𝑣𝑥,𝑦) 

 

Properties of Jacobian 

First property 

If U and V are the function of x and y then 
𝜕(𝑢,𝑣)𝜕(𝑥,𝑦)X  

𝜕(𝑥,𝑦)𝜕(𝑢,𝑣)  = 1 

Second Property 

If U,V are the functions of r,s where r and s are function of x,y, the  𝜕(𝑢,𝑣)𝜕(𝑥,𝑦)= 
𝜕(𝑢,𝑣)𝜕(𝑟,𝑠)X  

𝜕(𝑟,𝑠)𝜕(𝑥,𝑦) 
 

Third Property 

If function U,V,W of three independent variables x,y,z are not independent then  𝜕(𝑢, 𝑣, 𝑤)𝜕(𝑥, 𝑦, 𝑧) = 0  
Recently, Rachunkova in [32] and Torres in [8] studied periodic boundary problems by using 

signed Green’s function combining Kransnoselskii’s fixed point theorem on compression and 

expansion  of cones, and they obtained the new existence and multiplicity result concerning one 

signed periodic solution of the equation as well as equations with singularity. But the method 

mentioned above is difficult to be applied for estimate of the sharp number of solutions of (1.1), 

because it is impossible to determine the sharp norm for the Green’s function. For the case 

indefinite weight, even the existence of T- periodic solution is not known. It seems that infinite 

dimensional singularity theory established by Berger and Church in [4] provides a natural 

platform to deal with such kind of problems, and has been already successfully applied to non 

homogeneous non linear elliptic equations with both Dirchlet and Neumann boundary values 

respectively. To know more about this approach, one can refer to the approach, one can refer to 

comprehensive survey articles [10,33]. 
 In order to understand the global structure of periodic solutions and stability of each solutions 

under the cubic restoring force, Chen and Li in [2] used the different approach based on Crandall-

Robinowitz bifurcation theorem and contraction method but devoted their work to the exact 

multiplicity and stability of periodic solution under cubic nonlinear restoring force with a strong 

damped condition. 
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a(t) ≤ (π)2T2  +  C24 , and a̅ > 0  where a̅ denotes the average of a(t) over a period. 

In this paper they used global bifurcation method to cover the situation that the method to cover 

the situation that the method based on maximum principle developed in [37, 30, 29] and super-

sub solutions methods are not applicable to degenerate situation and the interesting case when 

the graph of forcing term h(t) intersect the critical level is missing where bifurcation occurs. 

There result confirmed the first issue of the number of periodic solution of (1.1) is at most three 

under strong damped condition. Generally exactly one or three. The periodic solution of (1.1) 

forms an “S” - shape smooth curve, symmetric with respect to the origin. 

Dutta and Prajapatic in [3] reported a symmetric investigation in the phase space of the double 

well Duffing Oscillator, they used bifurcation diagram to show the region characterized by the 

parameters for which one finds periodic solutions, a periodic solution. They also observed that 

when driving force is increased, there is a series of parallel “islands” of parameters characterized 

by a periodic attractors. They found that even the model is perturbed by linear term, it shows 

periodic and chaotic behaviour and that when damping coefficient is taken as zero and the non 

linear stiffness parameter is taken sufficiently small, the model shows homoclinic nature for 

whatever the value of force. 

 

4. Results and Discussion 

Our modified Duffing equation is �̈� + α�̇�-𝜏2𝑥 + 𝛽𝑥3  = 𝑓𝑠𝑖𝑛𝜔𝑡       (4.1) 

With initial conditions x(0) = 1 and �̇�(0) = 1 

The equivalent of (4.1) is given by  �̇� = 𝑦,         �̇�  = −∝ 𝑦 − 𝜏2𝑥 +  𝛽𝑥3 + 𝐹𝑠𝑖𝑛𝑤𝑡     (4.2) 

Let 𝑋𝛼(𝑥, 𝑦) = (𝑦, −∝ 𝑦 − 𝜏2𝑥 +  𝛽𝑥3 + 𝐹𝑠𝑖𝑛𝑤𝑡 ) 

Now  𝑋𝛼(0,0) = 0 for every α and  𝑑𝑥𝛼(0,0) = ( 0    1−𝜏2    − 𝛼) ( 0    1−𝜏2    − 𝛼) − λ (1    00   1 ) = 0 ( 0    1−𝜏2    − 𝛼) − λ (𝜆  00   𝜆) = 0 ( −𝜆    1−𝜏2  − 𝛼 − 𝜆) = 0 ⇒ (−λ)(−α − λ) − −τ2 = 0 αλ + λ2 + τ2 = 0 𝜆2 + 𝛼𝜆 + 𝜏2 = 0        (4.3) λ = −α ± √b2 − 4ac2a  λ(α) = −α±√∝2−4τ22         (4.4) 

Consider ∝ such that |∝| < 2 

In this case 
−∝2 + i√∝2−4τ22  

imλ(α) ≠ 0, 
Where λ(α) = −α±√∝2−4τ22 = −∝2 + i√∝2−4τ22  

Furthermore, for  −2 <∝< 0, Re λ(α) < 0 

and for ∝= 0,   Re λ(α) = 0 and for 2>∝> 0,  Re λ(α) > 0   and  
𝑑(𝑅𝑒𝜆(𝛼))𝑑∝ |∝=0 = − 12 
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Therefore the Hopf bifurcation theorem applies and we conclude that there is one parameter 

family of closed orbits of  x=(𝑥𝛼 , 0) in a neighbourhood of (0,0,0) 

To find out if these orbits are stable and if they occur for α > 0, we look at  𝑋0(𝑥,y)=(𝑦, −𝜏2𝑥 +  𝛽𝑥3 + 𝐹𝑠𝑖𝑛𝑤𝑡). 𝑑𝑥0(0,0) = (0         1−𝜏2   0)  and   λ(0) = τi 
Recall that to use the stability formular  in we must choose coordinate so that  𝑑𝑥𝛼(0,0) = ( 0    𝐼𝑚(𝜆0)−𝐼𝑚(𝜆0)   −𝛼)=(0         𝜏−𝜏   0 ) 

 Which is not in the required form. We must make a change of coordinates so that   𝑑𝑥0(0,0) becomes ( 0    1−1  0) that is we must find vectors 𝑒1̂ and 𝑒2̂ so that 𝑑𝑥0(0,0)𝑒1̂ = −𝑒2̂   and 𝑑𝑥0(0,0)𝑒2̂ = 𝑒1̂ 

The vectors  𝑒1̂ = (1, −1) and   𝑒2̂ = (0,1) will do. 

A procedure for finding 𝑒1̂ and 𝑒2̂ is to find ∝  and ∝̅ the complex eigenvectors. We may then take 𝑒1̂ =∝ +∝̅   and  𝑒2̂ = 𝑖(∝ −∝̅) 𝑋0(𝑥𝑒1̂ + 𝑦𝑒1̂) = 𝑋0(𝑥, 𝑦 − 𝑥) = (y, −∝ (y − x) − τ2x + βx3 + Fsinωt) = (y𝑒1̂, −∝ (y − x) + τ2x + βx3 + Fsinωt)𝑒2̂                 (4.6) ∴∴∴ 𝑋0(𝑥, 𝑦) = (𝑦, −∝ (y − x) + τ2x + βx3 + Fsinωt) 𝜕𝑛𝑥1𝜕𝑥𝑗𝜕𝑦𝑛−𝑗 (0,0)=0 for every n> 1 ∴ x1(x, y) = y           (4.7) 𝑋2(𝑥, 𝑦) = −∝ (y − x) + τ2x + βx3 + Fsinωt       (4.8) ∴ 𝜕2𝑥2𝜕𝑦2  (0,0)=0 ,           
𝜕2𝑥2𝜕𝑥𝜕𝑦 (0,0)=0 𝜕3𝑥2𝜕𝑥3  (0,0)=6β,           

𝜕3𝑥2𝜕𝑥2𝜕𝑦 (0,0)=0 𝜕3𝑥2𝜕𝑥𝜕𝑦2 (0,0)=0,        
𝜕3𝑥2𝜕𝑦3 (0,0)=0 ∴ v⃛(0) = 3π4|λ(0)| (6β)        (4.9) 

The orbits are unstable and bifurcation takes place below criticality. The orbits occur for μ < μ0 

and are repelling on the center manifold, and so are unstable by general. 

We illustrate the numerical simulation of the results using the MATHCAD software: 

 

5. Conclusion 

From our results, the Floquet method is very effective in determining the stability and Hopf 

bifurcation analysis of the periodic solution of the Duffing oscillator. The advantage of this 

method is that it shows the regions where orbits are stable and unstable. The bifurcation points 

showed critical and sub-critical regions. The orbits were found to be unstable and are repelling 

each other at the center of the manifold. 
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