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Abstract—The present study investigates the efficacy of EEG signal analysis in gauging 

human mental stress across distinct attention stages. The primary objective is to discern 

EEG-based markers and employ appropriate classification methodologies capable of 

delineating brainwave patterns based on their intensity or frequency, thus facilitating 

the identification of varying mental states crucial for enhancing human-machine 

interaction. The research endeavors to classify three distinct mental states—relaxation, 

neutrality, and concentration—utilizing an Emotiv headset equipped with four EEG 

sensors (TP9, AF7, AF8, and TP10). A dataset comprising sessions of one-minute 

duration for each attention category was compiled, encompassing data from five 

individuals. To refine and assess various techniques, an array of feature selection 

algorithms was employed initially on a pool of 2100 features. Subsequent application of 

diverse classifiers, including Bayesian Networks, Support Vector Machines, and 

Random Forests, enabled the reduction of the feature set to 44 critical factors, resulting 

in an overall classification accuracy of 87%. 

Keywords— Electroencephalogram signal; brain machine interface; mental state 

classification; machine learning; Emotiv sensor 

 

I. INTRODUCTION 

HEsignificance of maintaining good mental health for overall physical and mental 

well-being is underscored by recent studies, which highlight its potential to mitigate 

the risk of cardiovascular events such as heart attacks and strokes. Conversely, poor 

mental health can precipitate hazardous behaviors and undermine physical health. 

Individuals grappling with severe mental health issues often experience a 

diminished quality of life characterized by distress, a sense of powerlessness, low 

self-esteem, social alienation, reduced activity, and feelings of hopelessness. It is 
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imperative to recognize that mental health, akin to physical health, is intrinsic to 

one's holistic wellness, encompassing the state of one's mind, emotions, and 

feelings. The autonomous detection of cognitive or affective mental states holds 

considerable utility across  

 

diverse domains, including robotics, medicine, education, and neurology. Among 

the array of options available for facilitating human-machine interaction, surface 

brain activity signals, colloquially known as electroencephalography (EEG), emerge 

as a viable choice. EEG captures the brain's electrical activity through electrodes 

positioned on the scalp, providing insights into neuronal dynamics. The current 

study adopts a short-time windowing technique to identify local discriminative 

features within EEG signals, crucial for their effective classification into distinct 

mental states. The human brain, comprising billions of neurons, generates intricate 

electrical signals manifesting as nonlinear brainwave patterns. These signals vary in 

significance across different brain regions, with the cerebral hemispheres, 

brainstem, and cerebellum constituting the principal divisions. The brain's lobes—
frontal, temporal, parietal, and occipital—serve distinct functions, such as memory 

processing, sensory perception, and concentration, each characterized by unique 

electrical activity patterns discernible through EEG analysis. Over the years, 

extensive research has elucidated EEG signals and their correlation with mental 

states, facilitated by advancements in machine learning techniques for signal 

processing and classification. Utilizing EEG data, researchers have made strides in 

identifying abnormal brain activity associated with conditions like stroke, aiding in 

early detection and rehabilitation efforts. Additionally, EEG data has facilitated 

advancements in brain-machine interfaces, enabling motor recovery post-stroke. 

Notably, EEG analysis holds promise in distinguishing seizures in epilepsy patients, 

including newborns. However, prior research predominantly relied on server or 

high-end microcomputer setups, prompting the current study to propose an edge-

level analysis and model deployment framework using readily accessible devices 

like the NvidiaJetson Nano or Raspberry Pi4 microcomputers. The proposed system 

entails real-time EEG data collection and analysis using four electrodes, with a focus 

on classifying emotional states. The subsequent sections of this paper delineate past 

research in EEG processing (Section 2), the proposed methodology encompassing 

preprocessing, feature extraction, and training processes (Section 3), and 

concluding insights along with limitations and future directions (Section 4). 

I. RELATED WORKS 

There are numerous works that have been carried out in the field of human attention 

[Kishan P, 17] concentration detection as well as emotion measurement and 

detection. Rahaman et al. [Wang, 20] give a direction on the assessment of cognitive 



Innovations, Number 77June 2024 

2636 www.journal-innovations.com 
 

 

function as a pivotal part of e-healthcare [Chowdhuri. 22] Here the various classes of 

non-invasive sensor and their uses has been analyzed in the context of various 

disease categories like sleep apnea, and brain tumor patients. The state-of-the-art 

feature extraction mechanism has evolved to produce remarkable accuracy in this 

case. On the other hand, give a direction on personalized cognition-driven 

intelligent wayfinding techniques [Wang, 19]. The CNN-based model has been built 

to create the wayfinding method with the help of EEG signal data. A test has been 

carried out on a simulated platform. One of the scopes of this research is that more 

categories of EEG can be considered for wayfinding analysis. In another work, a 

vigilance measurement with defined EEG-Sub-bands is performed [Arjun, 22]. The 

experimental results reveal that the highest correlation can be applied for vigilance 

detection. A hybrid kinematic EEG signal processing methodology with wavelet 

decomposition has been implemented in this work. An independent emotion 

recognition system using EEG signals is proposed [Cui H, 20], the core concept 

employed here is an attention-driven neural network. The work primarily 

emphasizes the subject of independent emotion recognition. The two-fold 

architecture of unsupervised LSTM and CNN has been applied to EEG datasets. 

Multiple promising challenges can be addressed that can be solved using such a 

state-of-the-art methodology [Aziz, 17]. On the other hand, propose a study to 

determine the concentration and non-concentration based on Fourier Transform 

[Houssein, 22]. A feature extraction method has been implemented using Hilbert 

Huang Transform (HHT) [Ang K.K.,  10] using EMD and HT. A multichannel EEG-

based emotion detection has been studied [Jordan J., 19]. The study has been made 

on numerous feature extraction methodologies applied to EEG signals. Based on that 

the review suggests some of the major challenges and future works in the field of 

EEG-based emotion detection. A multi-channel EEG-based time-frequency analysis 

for the recognition of human emotion is proposed where DWT methodology 

[Rahman, 21]  has been used for the decomposition of the EEG signals [Li W.,  12] 

with a db6 wavelet function [Wagh, 22]. SVM, kNN and Decision tree model has 

been used to classify the model where 71% accuracy has been given by decision 

tree. A low-power wearable hardware device amalgamated with a convolutional 

neural network has been proposed [Gonzalez,20]. The test has been carried out on 5 

healthy people with standard visual stimuli and the efficiency has been recorded as 

11 GOps/W. the discriminative feature extraction from the EEG signal is quite 

challenging. An attention-based convolutional recurrent neural network to identify 

significantly discriminative features is invented [Tao W., 20]. Their experimental 

results give start-of-the-art results in attention-based emotion detection. Table I 

summarizes the implementation of the technologies involved. 
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TABLE I 

SUMMARY OF THE IMPLEMENTED TECHNOLOGIES INVOLVED WITH THE 

RELATED RESEARCH 

Proposed 

work 

Testbed 

creation 

Energy 

efficiency 

Attention-

based 

approach 

Intelligent 

modeling 

[6] 

 

  ✔  ✔  

[7] 

 
✔   ✔  ✔  

[8] 

 

✔   ✔  ✔  

[9] 

 

  ✔  ✔  

[10] 

 

   ✔  

[11] 

 

✔   ✔  ✔  

[12] 

 

✔   ✔  ✔  

[13] 

 

  ✔  ✔  

[14] ✔  ✔  ✔  ✔  

✔ ✔ ✔
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Fig. 1. Block diagram of signal acquisition and prediction using BCI Toolkit. 

 

In this section we discuss the problem definition, preprocessing and overall working 

framework of our proposed edge level processing. 

A. Problem Definition 

The EEG signals captured from the scalp surface exhibit stochastic properties, which 

can be partitioned into frequency bands characterized by distinct amplitude and 

frequency attributes. These frequency bands, encompassing delta (d), theta (θ), 

alpha (α), beta (β), and gamma (γ) bands, convey valuable information regarding 

individuals' cognitive and emotional states. The amplitude of EEG signals typically 

falls within the range of 10 to 100 mV, with each frequency band associated with 

specific mental states such as deep sleep, relaxation, meditation, and various mental 

disorders. 

 

In EEG data collection, headsets typically employ one to eight electrodes positioned 

on the scalp, adhering to the 10-20 standardization scheme. Let P = [P1 P2 ⋯ Pk]denote 

the set of connected probes, where EEG signals from each probe are amalgamated 

into a 2D vector P [n x k], with n representing the number of samples and k denoting 

the number of probes. The EEG dataset, comprising n samples of vectors akin to P, is 

represented as a matrix 𝐅 = 𝐝𝟏𝟏 𝐝𝟏𝟐 𝐝𝟏𝐤𝐝𝟐𝟏 𝐝𝟐𝟏 𝐝𝟐𝐤𝐝𝐧𝟏 𝐝𝐧𝟐 𝐝𝐧𝐤. Subsequently, the correlation coefficient 

is computed across all features in matrix F, and a confusion matrix is constructed. To 

manage the increasing number of features while maintaining a constant sample size, 

feature engineering is employed to transform the input feature set into an [n x t] 

matrix  𝐅𝐩 = 𝐟𝟏𝟏 𝐟𝟏𝟐 𝐟𝟏𝐭𝐝𝟐𝟏 𝐝𝟐𝟐 𝐝𝟐𝐭𝐝𝐧𝟏 𝐝𝐧𝟐 𝐝𝐧𝐭 wheret≥k. 
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A classification model is then developed to map each of the n features to a 

corresponding label from the label set 𝐘 = [𝐘𝟏, 𝐘𝟐, … 𝐘𝐢], where i ranges from 1 to nt. 

The classification model M(X,Y) is formulated based on the evaluated features in the 

[n x t] matrix. The labels Y represent the set of emotions pertinent to the problem, 

with each Yi mapped to a subset e comprising distinct emotional states 𝐞 =[𝐞𝟏,  𝐞𝟐, … , 𝐞𝐣]. 
 

B. Preprocessing and Transformation 

Brain-computer interface (BCI) applications face inherent challenges in feature 

extraction and classification of EEG signals due to their complex, nonlinear, non-

stationary, and unpredictable nature. To address this complexity, short-time 

windowing techniques are commonly employed to capture transient signal 

characteristics. However, the non-stationarity of signals persists, influenced by 

factors such as eye blinking, changes in alertness, wakefulness, and mental state 

transitions. In this context, this subsection discusses the selection of features crucial 

for discriminating between different mental states, utilizing statistical methods 

including Shannon entropy, max-min features in temporal sequences, log-

covariance, and time-frequency analysis via fast Fourier transform (FFT). 

 

Each feature is computed based on the temporal distribution of signals over specific 

time spans, leveraging five signal frequencies (alpha, beta, gamma, delta, theta) to 

extract a comprehensive set of attributes. This results in the retrieval of 1656 feature 

values from the EEG signals. Classical statistical features are employed in 

conjunction with multiple features to capture patterns in time series and provide a 

compact representation of raw sensor data within defined time intervals. 

The statistical features encompass various measures: (i) mean values, (ii) standard 

deviation, (iii) third and fourth-order statistical moments capturing skewness and 

kurtosis, (iv) autocorrelation of signals at each time window, and (v) maximum and 

minimum terms for each time frame, culminating in a total of 32 features per sample. 

Temporal features are further extracted by dividing one-second time windows into 

four batches of 0.25 seconds, evaluating mean, maximum, and minimum values for 

each batch, resulting in 18 features based on distance computation. Combining 

these with the previous statistical features yields a total of 30 features per window, 

with 150 temporal features computed per second for five signals. Log covariance 

analysis selects 144 values (12*12) for evaluation, encompassing upper and lower 

triangular elements. A total of 1200 features are evaluated for four samples. 

Additionally, FFT analysis is employed to analyze the spectrum of time-series data, 

resulting in the evaluation of 328 FFT features for each window. These diverse sets of 



Innovations, Number 77June 2024 

2640 www.journal-innovations.com 
 

 

features contribute to comprehensive feature representation essential for effective 

EEG signal classification and mental state discrimination in BCI applications. 

C. Classification 

Our study aims to classify different emotional states using preprocessed EEG data, 

represented as the feature matrix Fp. This task entails a multi-class classification 

problem, where each instance of EEG data may correspond to one of several 

potential emotional states. To achieve this, we have evaluated five prominent 

machine learning algorithms: Decision Tree, K-Nearest Neighbors (KNN), Naive 

Bayes, Neural Networks, and Support Vector Machine (SVM). 

The Decision Tree model operates by iteratively constructing a series of decision 

rules derived from the features, creating a hierarchical tree structure. Each decision 

rule divides the data based on the value of a particular feature, leading to branches 

that represent distinct decision paths culminating in predicted class labels. The tree 

construction process continues recursively until predefined stopping conditions, 

such as maximum tree depth or minimum samples per leaf, are met. In contrast, the 

KNN model classifies a new sample's emotional state by identifying its k nearest 

neighbors in the feature space, utilizing distance metrics like Euclidean or 

Manhattan distance. The predicted label for the new sample is determined by the 

majority class among its nearest neighbors. 

The Naive Bayes classifier assumes conditional independence among features given 

the class label, leveraging Bayes' theorem to compute the probability of each class 

label for a given set of features. Despite its scalability and ability to handle high-

dimensional data, the Naive Bayes model's accuracy may be constrained by the 

independence assumption's potential deviation from reality. Neural Networks 

consist of interconnected layers of neurons that learn to transform input data into 

increasingly abstract representations. This model, specifically Deep Artificial Neural 

Networks in our experimentation, can capture complex feature interactions and non-

linear relationships with sufficient data and layers. SVM seeks to find the hyperplane 

in the feature space that best separates different class labels, and for non-linearly 

separable data, it employs a kernel trick to map the data into a higher-dimensional 

space where it becomes linearly separable. Effective for high-dimensional data, 

SVM can discern both linear and non-linear relationships between features, 

contributing to its versatility in classification tasks. 

 

II. RESULTS AND DISCUSSION 

In this section, we provide an overview of the experimental data utilized for model 

training, along with the corresponding results obtained from the conducted 

experiments. The experimental dataset comprises six features, with preprocessing 

conducted to replace any missing data with 0. During experimentation, the features 
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"Right AUX" and "Timestamps" were omitted due to their characterization as noise. 

Additionally, a normalization process was implemented as part of the data 

preprocessing pipeline to ensure uniform scaling across all features. Figure 2 

illustrates the correlation coefficient matrix computed between the selected set of 

features, representing the received data from four different probes. The correlation 

matrix was derived using Pearson's correlation coefficient. Analysis of this matrix 

reveals several significant findings: Moderate positive correlations are observed 

between TP9 and AF7 (0.45), as well as between TP10 and AF8 (0.46). Additionally, 

weaker positive correlations are noted between TP9 and TP10 (0.58), and between 

AF7 and AF8 (0.35). Conversely, a weak negative correlation is observed between 

AF7 and AF8 (-0.17). Interpreting these correlations, it can be inferred that signals 

from TP9 and AF7, as well as TP10 and AF8, exhibit stronger correlations compared 

to signals from other electrode pairs. This observation suggests that these electrode 

pairs may capture activity from proximal brain regions that are functionally 

connected. Furthermore, the weaker positive correlation between TP9 and TP10 

implies a degree of symmetry in neural activity between these regions, while a 

similar correlation between AF7 and AF8 suggests potential functional differentiation 

between these regions. 

 
Fig. 2. Correlation Heat Map to showcase the correlation between features. 

In this section, we explore the impact of clustering the data based on similarities in 

the feature space, employing the k-means clustering algorithm. By discerning 

patterns or groupings in the data that may not be readily discernible from raw data 

inspection, k-means clustering offers valuable insights into the data structure. The 

resulting visualization provides an overview of the data structure, elucidating 

relationships or dependencies among different features. Specifically, this 

visualization aids in identifying whether certain electrode pairs tend to cluster 

together, thereby shedding light on underlying neural activity patterns. 
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Moreover, the application of Principal Component Analysis (PCA) further simplifies 

the interpretation of complex data by reducing its dimensionality. Figure 3 presents 

the visualization of k-means clustering with 3 clusters following the application of the 

PCA process. The k-Means algorithm operates via a straightforward iterative 

approach, initially selecting data points as centroids and subsequently computing 

new centroids to minimize the net distance between all points in a cluster and its 

centroid. Given the unsupervised nature of the approach, the number of clusters is 

fixed at 3, aligning with the three emotion classes labeled in our dataset. 

Observing the visualization, it becomes apparent that the clusters are well-defined, 

with minimal overlap between them. This suggests the effectiveness of the k-means 

clustering algorithm in partitioning the data into distinct groups based on underlying 

similarities in the feature space. 

 

Fig. 3.Visualization of KMeans Clustering with n_cluster = 3 is shown below (data 

compressed using PCA). 

An analysis on Silhouette's score is given in Table II. The Silhouette score is a 

measure of how well each data point in a clustering algorithm fits its assigned cluster 

relative to the other clusters. It is usually used to evaluate the quality of the 

clustering solution, that is with higher Silhouette scores indicating better clustering 

results. It can be observed that k-means clustering with 3 clusters has the highest 

Silhouette score of 0.40513, indicating that it may be the best clustering approach. 

This aligns well as the number of classes in our dataset is also three; i.e. the 3 

emotion classes. 
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TABLE II 

Summarized Results From Selected Clustering Algorithms 

Algorithm Number of Clusters Silhouette’s Score 

KMeans Clustering 2 0.3478 

KMeans Clustering 3 0.40513 

Agglomerative 

Clustering 

3 0.3718 

Agglomerative 

Clustering 

2 0.3382 

 

TABLE III 

Model Accuracy Comparison 

Algorithm  Test Accuracy 

KNN  94.8 

Decision Tree (without 

Bagging) 

90.5 

Naive Bayes (without 

Bagging) 

81.7 

Decision Tree (with 

Bagging) 

92.7 

Naive Bayes (with 

Bagging) 

82.3 

Deep Artificial 

Neural Networks 

97.4 

 

TABLE IV 

Precision and Recall For All The Classifiers Used 

Algorit

hm  

Pre

cisi

on 

(cla

ss 

0) 

Pre

cisi

on 

(cla

ss 

1) 

Pre

cisi

on 

(cla

ss 

2) 

Re

cal

l 

(cl

ass 

0) 

Rec

all 

(cla

ss 

1) 

Re

cal

l 

(cl

ass 

2) 

KNN  0.92

0 

0.93

5 

0.98

8 

0.9

72 

0.88

4 

0.9

77 

Decisio

n Tree 

(withou

0.92

0 

0.82

5 

0.96

4 

0.9

10 

0.87

0 

0.9

30 
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t 

Baggin

g) 

Naive 

Bayes 

(withou

t 

Baggin

g) 

0.74

1 

0.79

0 

0.92

2 

0.8

99 

0.54

1 

0.9

65 

Decisio

n Tree 

(with 

Baggin

g) 

0.97

0 

0.87

2 

0.93

3 

0.9

21 

0.89

0 

0.9

65 

Naive 

Bayes 

(with 

Baggin

g) 

0.76

4 

0.77

0 

0.92

2 

0.8

71 

0.59

6 

0.9

65 

Deep 

Artifici

al 

Neural 

Networ

ks 

0.97

7 

0.94

6 

0.99

4 

0.9

66 

0.96

6 

0.9

88 

 

Table III and Table IV provide insights into the classification process conducted on 

our dataset, as depicted in Figure 4. Employing a range of classification models 

including KNN, Decision Tree, Naïve Bayes, Random Forest, Naïve Bayes with 

bagging, and Neural Network, we evaluated their respective performances. 

Notably, Table 3 outlines the parameters utilized for the Neural Network model. 

The results indicate that Naïve Bayes classification exhibited the lowest accuracy at 

82.05%, while the Deep Neural Network, with the specified parameter settings, 

achieved the highest accuracy exceeding 98%. These findings suggest the 

superiority of neural networks over traditional machine learning methods such as 

KNN, Naïve Bayes, and Decision Tree. Furthermore, we observed enhanced 

accuracy by employing ensemble techniques, particularly through majority voting 

with a combination of Naïve Bayes and Decision Tree models. The combined model 

achieved an accuracy of 93.95%, surpassing the individual model accuracies. 
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Additionally, the utilization of bagging methods notably improved the individual 

accuracies of Naïve Bayes and Decision Tree models. In the case of Neural 

Networks, optimization of hyperparameters within the Adam Optimizer framework 

and fine-tuning of the model architecture significantly influenced accuracy 

outcomes. Figure 5 presents the confusion matrix depicting the prediction outcomes 

of the Neural Network model, while Figure 6 illustrates the ROC curve visualization 

using the same model. The ROC curve offers insights into the model's ability to 

distinguish between true positive and false positive cases across various label 

values. The substantial area under the ROC curve for Neural Networks in a one-vs-all 

classification scenario signifies robust performance and accurate classification of the 

target class amidst other emotion classes. 

 
Fig. 4. Accuracy Comparison between the selected set of classifiers 

 
Fig. 5.Confusion Matrix of Neural Network on the dataset 
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Fig. 6.ROC curve visualization of Neural Network 

 

All the experimentation was conducted on an edge level device. The edge level 

analysis of the CPU utilization of model training is showcased in figure 7. It can be 
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observed that a Neural network utilized the maximum memory during the training 

process. 

 
Fig. 7.CPU utilization during Training of Neural Network 

 

TABLE V 

Deep Ann Parameter Setting. 

Parameters Setting 

 

 Hidden Layers and 

Activation Function 

Layer 1: 988 (Dense), 

Layer 2: 800(Dense), 

Layer 3: 

800(LeakyReLU), 

Layer 4:400(Dense), 

Layer 5: 

400(LeakyReLU), 

Layer 6:200(Dense), 

Layer 7: 

200(LeakyReLU) 

Layer 8: 100(Dense), 

Layer 9: 

100(LeakyReLU), 

Layer 9: 100(Flatten), 

Layer 10: 3(Dense) 

Learning rate 0.0017 

Epochs 50 

Error Metric  Sparse Categorical 

Crossentropy 

III. CONCLUSION 

The research conducted has laid a promising groundwork for future investigations 

into EEG-based feature extraction and classification for recognizing mental states in 

human-machine interactions. Utilizing the Emotiv BCI headband with four EEG 
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sensors (TP9, AF7, AF8, TP10), a dataset comprising five individuals across three 

distinct mental states - relaxation, neutrality, and concentration - was successfully 

established. From an extensive pool of over 2100 potential features, a rigorous 

selection process coupled with the application of multiple classifiers such as 

Bayesian Networks, Support Vector Machines, and Random Forests resulted in the 

identification of 44 critical factors. Despite the significant reduction in feature space, 

the streamlined model achieved an impressive overall recognition accuracy 

exceeding 87%. Furthermore, employing Deep Neural Network (DNN) techniques 

led to an outstanding accuracy rate of 97.8% on the collected dataset, corroborated 

by the validation through ROC curve estimation. 

 

Additionally, the research showcased the feasibility of edge CPU utilization through 

experimentation on Raspberry Pi 4 devices, affirming the potential use of affordable 

consumer-grade EEG devices for practical applications in mental state recognition 

and human-machine interactions. 

However, one limitation of the approach lies in categorizing mental states into only 

three categories - relaxation, neutrality, and concentration. Human cognitive states 

are multifaceted and extend beyond these predefined categories. Future endeavors 

aim to address this limitation by exploring further subdivisions of cognitive states to 

gain a more nuanced understanding of EEG signal variations. Overall, this research 

underscores the significance of EEG-based methodologies in advancing the field of 

mental state recognition, with implications for enhancing human-machine interaction 

systems and paving the way for future investigations into cognitive state 

categorization. 
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